• Title/Summary/Keyword: Parallel demodulation

Search Result 10, Processing Time 0.027 seconds

Performance Improvement for Nonchoherent DS/CDMA Reverse Links using Channel Estimation and Multiuser Detection (비동기 복조 DS/CDMA 역방향 링크에서 채널 추정 및 다중 사용자 검파를 이용한 성능 개선)

  • 홍대기;윤석현;홍대식;강창언
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.755-764
    • /
    • 2001
  • In this paper, we propose maximum likelihood (ML) decision feedback channel estimation (DFCE) for M-ary orthogonal modulation in direct sequence/code division multiple access (DS/CDMA) systems. The proposed DFCE uses the maximum combiner output in a RAKE receiver as decision feedback information, enabling M-ary orthogonal signals to be demodulated coherently and a RAKE receiver to use a em maximal ration combining (MRC) scheme. However, the performance of the proposed DFCE in the multiuser environment is severely degraded due to multiple access interference (MAI). To overcome this problem, a multistage parallel interference cancellation (PIC) scheme is combined with the proposed DFCE for multiuser environments. Accurate knowledge of the channel coefficient estimated by the proposed DFCE is used to regenerate the signal of each user for the multistage PIC scheme. According to the results of our simulations, the performance of coherent demodulation using the proposed system is significantly improved in comparison with conventional noncoherent demodulation.

  • PDF

NOMA Transceiver Design for Highway Transportation in Mobile Hotspot Networks

  • Hui, Bing;Kim, Junhyeong;Choi, Sung-Woo;Chung, Heesang;Kim, Ilgyu;Lee, Hoon
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1042-1051
    • /
    • 2016
  • The mobile hotspot network (MHN), which is capable of providing a data rate of gigabits per second at high speed, is considered a potential use case of the future enhanced mobile broadband for 5G. Because a unidirectional network deployment has been considered for an MHN, non-orthogonal multiple access (NOMA) can be employed to improve the system performance. For a practical implementation of NOMA under an MHN highway scenario where multiple pieces of MHN terminal equipment are served through the same beam simultaneously, a NOMA transceiver is proposed in this paper. For the NOMA transmitter, Gray-coded QAM constellation mapping is extended to arbitrary modulation order q. For the NOMA receiver, successive interference cancellation (SIC) is no longer necessary, and instead, a parallel demodulation is proposed. The numerical and simulation results suggest that the proposed NOMA transceiver outperforms the conventional NOMA SIC receiver and can be flexibly used for an MHN highway scenario.

Initial Timing Acquisition for Binary Phase-Shift Keying Direct Sequence Ultra-wideband Transmission

  • Kang, Kyu-Min;Choi, Sang-Sung
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.495-505
    • /
    • 2008
  • This paper presents a parallel processing searcher structure for the initial synchronization of a direct sequence ultra-wideband (DS-UWB) system, which is suitable for the digital implementation of baseband functionalities with a 1.32 Gsample/s chip rate analog-to-digital converter. An initial timing acquisition algorithm and a data demodulation method are also studied. The proposed searcher effectively acquires initial symbol and frame timing during the preamble transmission period. A hardware efficient receiver structure using 24 parallel digital correlators for binary phase-shift keying DS-UWB transmission is presented. The proposed correlator structure operating at 55 MHz is shared for correlation operations in a searcher, a channel estimator, and the demodulator of a RAKE receiver. We also present a pseudo-random noise sequence generated with a primitive polynomial, $1+x^2+x^5$, for packet detection, automatic gain control, and initial timing acquisition. Simulation results show that the performance of the proposed parallel processing searcher employing the presented pseudo-random noise sequence outperforms that employing a preamble sequence in the IEEE 802.15.3a DS-UWB proposal.

  • PDF

Novel Laser Ultrasonic Receiver for Industrial NDE

  • Pouet, B.;Breugnot, S.;Clemenceau, P.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.380-389
    • /
    • 2006
  • A new laser-based ultrasonic receiver that is based on multi-channel interferometry is shown to be well suited for robust and sensitive detection of ultrasound in industrial environment. The proposed architecture combines random-quadrature detection with detector arrays and parallel multi-speckle processing. The high sensitivity is reached, thanks to the random phase distribution of laser speckle caused by surface roughness. High-density parallel signal processing is achieved by using a simple demodulation technique based on signal rectification. This simple detection scheme is also demonstrated for rejection of the laser intensity noise, making possible the use of lower cost laser without reduction in performances. Results demonstrating this new principle of operation and its performances are presented.

Design of MRI Spectrometer Using 1 Giga-FLOPS DSP (1-GFLOPS DSP를 이용한 자기공명영상 스펙트로미터 설계)

  • 김휴정;고광혁;이상철;정민영;장경섭;이동훈;이흥규;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.12-21
    • /
    • 2003
  • Purpose : In order to overcome limitations in the existing conventional spectrometer, a new spectrometer with advanced functionalities is designed and implemented. Materials and Methods : We designed a spectrometer using the TMS320C6701 DSP capable of 1 giga floating point operations per second (GFLOPS). The spectrometer can generate continuously varying complicate gradient waveforms by real-time calculation, and select image plane interactively. The designed spectrometer is composed of two parts: one is DSP-based digital control part, and the other is analog part generating gradient and RF waveforms, and performing demodulation of the received RF signal. Each recover board can measure 4 channel FID signals simultaneously for parallel imaging, and provides fast reconstruction using the high speed DSP. Results : The developed spectrometer was installed on a 1.5 Tesla whole body MRI system, and performance was tested by various methods. The accurate phase control required in digital modulation and demodulation was tested, and multi-channel acquisition was examined with phase-array coil imaging. Superior image quality is obtained by the developed spectrometer compared to existing commercial spectrometer especially in the fast spin echo images. Conclusion : Interactive control of the selection planes and real-time generation of gradient waveforms are important functions required for advanced imaging such as spiral scan cardiac imaging. Multi-channel acquisition is also highly demanding for parallel imaging. In this paper a spectrometer having such functionalities is designed and developed using the TMS320C6701 DSP having 1 GFLOPS computational power. Accurate phase control was achieved by the digital modulation and demodulation techniques. Superior image qualities are obtained by the developed spectrometer for various imaging techniques including FSE, GE, and angiography compared to those obtained by the existing commercial spectrometer.

  • PDF

Phase Control Optimization at Waveguide Crossover and Its Application to 45° Optical Hybrid for Demodulating 8DPSK Optical Signals

  • Jeong, Seok-Hwan
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.711-720
    • /
    • 2021
  • A novel optical hybrid device that doubles the multilevel demodulation resolution by adding the optical interferometer with a waveguide crossover is proposed, theoretically analyzed and experimentally verified. We report two types of all-passive phase control schemes that will be referred to as a phase compensation scheme and a phase optimization scheme. We also apply the proposed phase control schemes to a 45° optical hybrid consisting of two parallel 90° optical hybrids together with the proposed phase control scheme for demodulating 8-level differential phase shift keying optical signals. Octagonal phase response with low wavelength sensitive excess loss of <0.8 dB over 31-nm-wide spectral range will be demonstrated in the InP-based material platform.

A Study on SLM Method for PAPR Reduction by Scaling without Side Information in WiBro Systems (WiBro 시스템에서 스케일링을 이용한 PAPR 감소를 위한 부정보가 없는 SLM 기법 연구)

  • Lee, Jae-Sun;Gwak, Do-Young;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.389-393
    • /
    • 2008
  • OFDM (Orthogonal Frequency Division Multiplexing) modulation using the orthogonal subcarriers reduces the delay spread by increasing robustness to multipath fading and can use overlapped bandwidth due to orthogonality on frequency domain. Thus data rate and spectral efficiency are increased. Because of these reason, OFDM is used for high speed data transmission for multimedia transmission as HSDPA, WiBro, WLAN. However OFDM also has drawbacks that have the high PAPR (Peak to Average Power Ratio). This high PAPR takes place because of parallel processing a number of data at once using a FFT processor. By high PAPR, amplifier doesn't act in dynamic range, so that BER performance is worse. In this paper, we reduce the PAPR using SLM(Selective Mapping). SLM doesn't effect on BER performance, but should transmit the side information for demodulation [2]. Also PAPR is higher as the number of FFT processor is larger. Thus SLM has high complexity. In this paper, we analyze the performance of SLM using scaling for no side information.

  • PDF

A New Complex-Number Multiplication Algorithm using Radix-4 Booth Recoding and RB Arithmetic, and a 10-bit CMAC Core Design (Radix-4 Booth Recoding과 RB 연산을 이용한 새로운 복소수 승산 알고리듬 및 10-bit CMAC코어 설계)

  • 김호하;신경욱
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.9
    • /
    • pp.11-20
    • /
    • 1998
  • High-speed complex-number arithmetic units are essential to baseband signal processing of modern digital communication systems such as channel equalization, timing recovery, modulation and demodulation. In this paper, a new complex-number multiplication algorithm is proposed, which is based on redundant binary (RB) arithmetic combined with radix-4 Booth recoding scheme. The proposed algorithm reduces the number of partial product by one-half as compared with the conventional direct method using real-number multipliers and adders. It also leads to a highly parallel architecture and simplified circuit, resulting in high-speed operation and low power dissipation. To demonstrate the proposed algorithm, a prototype complex-number multiplier-accumulator (CMAC) core with 10-bit operands has been designed using 0.8-$\mu\textrm{m}$ N-Well CMOS technology. The designed CMAC core contains about 18,000 transistors on the area of about 1.60 ${\times}$ 1.93 $\textrm{mm}^2$. The functional and speed test results show that it can operate with 120-MHz clock at V$\sub$DD/=3.3-V, and its power consumption is given to about 63-mW.

  • PDF

Volumetric Blood Velocity Measurement on Multigate Pulsed Doppler System based on the Single Channel RF Sampling using the Optimized Sampling Factor (최적화된 샘플링 인수를 갖는 단일 채널 RF 샘플링 방식의 다중점 펄스 도플러 시스템을 사용한 혈류 속도분포 측정)

  • 임춘성;민경선
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.143-152
    • /
    • 1998
  • In this paper, we present the performances of a Doppler system using single channel RF(Radio Frequency) sampling. This technique consists of undersampling the ultrasonic blood backscattered RF signal on a single channel. Conventional undersampling method in Doppler imaging system have to use a minimum of two identical parallel demodulation channels to reconstruct the multigate analytic Doppler signal. However, this system suffers from hardware complexity and problem of unbalance(gain and phase) between the channels. In order to reduce these problems, we have realized a multigate pulsed Doppler system using undersampling on a single channel, It requires sampling frequency at $4f_o$(where $f_o$ is the center frequency of the transducer) and 12bits A/D converter. The proposed " single-Channel RF Sampling" method aims to decrease the required sampling frequency proportionally to $4f_o$/(2k+1). To show the influence of the factor k on the measurements, we have compared the velocity profiles obtained in vitro and in vivo for different intersequence delays time (k=0 to 10). We have used a 4MHz center frequency transducer and a Phantom Doppler system with a laminar stationary flow. The axial and volumetric velocity profiles in the vessel have been computed according to factor k and have been compared. The influence of the angle between the ultrasonic beam and the flow axis direction, and the fluid viscosity on the velocity profiles obtained for different values of k factor is presented. For experiment in vivo on the carotid, we have used a data acquisition system with a sampling frequency of 20MHz and a dynamic range of 12bits. We have compared the axial velocity profiles in systole and diastole phase obtained for single channel RF sampling factor.ng factor.

  • PDF

OFDM Communication System Using the Additive Control Tone for PAPR Reduction (PAPR 저감을 위하여 부가 Control 톤을 이용하는 OFDM 통신 시스템)

  • Kim Jin-Kwan;Lee Ill-Jin;Ryu Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.12 s.103
    • /
    • pp.1229-1238
    • /
    • 2005
  • OFDM(Orthogonal Frequency Division Multiplexing) communications system is very attractive for the high data rate wireless transmission. However, it may be distorted in the nonlinear HPA(High Power Amplifier) since OFDM signal has hish PAPR(Peak-to-Average Power Ratio). In this paper, a new method using control tone is studied for reducing the PAPR and we call it PCT(PAPR Control Tone) method. This proposed PCT method is to assign control tones for PAPR reduction at the predefined sub-carriers. After IFFT(Inverse Fast Fourier Transform) and PAPR calculation, the OFDM data signal of the lowest PAPR is selected to transmit. Unlike the conventional method, it can cut down the computational complexity because it does not require the transmission and demodulation process of side information about the phase rotation. Furthermore, if this method is made up in parallel configuration, it can solve the time delay problem so that it can be processed in real time processing. This proposed method is compared with the conventional selected mapping(SLM) technique. We find out the PAPR reduction performance and BER when the number of control tone is 6 and nonlinear HPA is considered.