Transactions of the Society of Information Storage Systems
/
v.1
no.2
/
pp.155-160
/
2005
In this paper, the channel decoder promising reliable data retrieving in noisy holographic channel has been developed for holographic WORM(write once read many) system. It covers various DSP(digital signal processing) blocks, such as align mark detector, adaptive channel equalizer, modulation decoder and ECC(error correction code) decoder. The specific schemes of DSP are designed to reduce the effect of noises in holographic WORM(H-WORM) system, particularly in prototype of DAEWOO electronics(DEPROTO). For real time data retrieving, the channel decoder is redesigned for FPGA(field programmable gate array) based hardware, where DSP blocks calculate in parallel sense with memory buffers between blocks and controllers for driving peripherals of FPGA. As an input source of the experiments, MPEG2 TS(transport stream) data was used and recorded to DEPROTO system. During retrieving, the CCD(charge coupled device), capturing device of DEPROTO, detects retrieved images and transmits signals of them to the FPGA of hardware channel decoder. Finally, the output data stream of the channel decoder was transferred to the MPEG decoding board for monitoring video signals. The experimental results showed the error corrected BER(bit error rate) of less than $10^{-9}$, from the raw BER of DEPROTO, about $10^{-3}$. With the developed hardware channel decoder, the real-time video demonstration was possible during the experiments. The operating clock of the FPGA was 60 MHz, of which speed was capable of decoding up to 120 mega channel bits per sec.
KIPS Transactions on Software and Data Engineering
/
v.5
no.10
/
pp.483-488
/
2016
In this paper, we propose a prototype-based classification learning by using the nearest-neighbor rule. The nearest-neighbor is applied to segment the class area of all the training data with hyperspheres, and a hypersphere must cover the data from the same class. The radius of a hypersphere is computed by the mid point of the two distances to the farthest same class point and the nearest other class point. And we transform the prototype selection problem into a set covering problem in order to determine the smallest set of prototypes that cover all the training data. The proposed prototype selection method is designed by a greedy algorithm and applicable to process a large-scale training set in parallel. The prediction rule is the nearest-neighbor rule and the new training data is the set of prototypes. In experiments, the generalization performance of the proposed method is superior to existing methods.
Park, Min-hee;Cho, Young-bok;Kim, So Young;Park, Jong-bae;Park, Jong-hyock
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.10
/
pp.1277-1286
/
2018
In this paper, we provide flexible scalability of computing resources in cloud environment and Apache Hadoop based cloud environment for analysis of public medical information big data. In fact, it includes the ability to quickly and flexibly extend storage, memory, and other resources in a situation where log data accumulates or grows over time. In addition, when real-time analysis of accumulated unstructured log data is required, the system adopts Hadoop-based analysis module to overcome the processing limit of existing analysis tools. Therefore, it provides a function to perform parallel distributed processing of a large amount of log data quickly and reliably. Perform frequency analysis and chi-square test for big data analysis. In addition, multivariate logistic regression analysis of significance level 0.05 and multivariate logistic regression analysis of meaningful variables (p<0.05) were performed. Multivariate logistic regression analysis was performed for each model 3.
This paper describes ATM cell encipherment method using Rijndael Algorithm adopted as an AES(Advanced Encryption Standard) by NIST in 2001. ISO 9160 describes the requirement of physical layer data processing in encryption/decryption. For the description of ATM cell encipherment method, we implemented ATM data encipherment equipment which satisfies the requirements of ISO 9160, and verified the encipherment/decipherment processing at ATM STM-1 rate(155.52Mbps). The DES algorithm can process data in the block size of 64 bits and its key length is 64 bits, but the Rijndael algorithm can process data in the block size of 128 bits and the key length of 128, 192, or 256 bits selectively. So it is more flexible in high bit rate data processing and stronger in encription strength than DES. For tile real time encryption of high bit rate data stream. Rijndael algorithm was implemented in FPGA in this experiment. The boundary of serial UNI cell was detected by the CRC method, and in the case of user data cell the payload of 48 octets (384 bits) is converted in parallel and transferred to 3 Rijndael encipherment module in the block size of 128 bits individually. After completion of encryption, the header stored in buffer is attached to the enciphered payload and retransmitted in the format of cell. At the receiving end, the boundary of ceil is detected by the CRC method and the payload type is decided. n the payload type is the user data cell, the payload of the cell is transferred to the 3-Rijndael decryption module in the block sire of 128 bits for decryption of data. And in the case of maintenance cell, the payload is extracted without decryption processing.
Ha, Woo-Seok;Kim, Soo-Mee;Park, Min-Jae;Lee, Dong-Soo;Lee, Jae-Sung
Nuclear Medicine and Molecular Imaging
/
v.43
no.5
/
pp.459-467
/
2009
Purpose: The maximum likelihood-expectation maximization (ML-EM) is the statistical reconstruction algorithm derived from probabilistic model of the emission and detection processes. Although the ML-EM has many advantages in accuracy and utility, the use of the ML-EM is limited due to the computational burden of iterating processing on a CPU (central processing unit). In this study, we developed a parallel computing technique on GPU (graphic processing unit) for ML-EM algorithm. Materials and Methods: Using Geforce 9800 GTX+ graphic card and CUDA (compute unified device architecture) the projection and backprojection in ML-EM algorithm were parallelized by NVIDIA's technology. The time delay on computations for projection, errors between measured and estimated data and backprojection in an iteration were measured. Total time included the latency in data transmission between RAM and GPU memory. Results: The total computation time of the CPU- and GPU-based ML-EM with 32 iterations were 3.83 and 0.26 see, respectively. In this case, the computing speed was improved about 15 times on GPU. When the number of iterations increased into 1024, the CPU- and GPU-based computing took totally 18 min and 8 see, respectively. The improvement was about 135 times and was caused by delay on CPU-based computing after certain iterations. On the other hand, the GPU-based computation provided very small variation on time delay per iteration due to use of shared memory. Conclusion: The GPU-based parallel computation for ML-EM improved significantly the computing speed and stability. The developed GPU-based ML-EM algorithm could be easily modified for some other imaging geometries.
Simulation study were performed for ventilation capability effect on the smoke spread in the deeply-underground subway station(DUSS). Singeumho station(The line # 5, Depth: 46m) was modeled and were analyzed for smoke-spread speed difference between the originally-designed-ventilation-capacity and the measured-ventilation-capacity. Field test data for actual fan in DUSS was applied as a boundary condition of a simulation. The whole station was covered in this analysis and total of 4 million grids were generated for this simulation. The fire-driven flow was analyzed case by case to compare the smoke-spread effects. In order to enhance the efficiency of calculation, parallel processing by MPI was employed and large eddy simulation method in FDS code was adopted.
Simulation study were performed for fire location effect on the smoke spread in the deeply-underground subway station(DUSS). In this research, Shingumho station (The line # 5, Depth: 46m) has been selected as case-study for the analysis of smoke-spread effect with the different fire location. Field test data measured for actual fan in DUSS was applied as a condition of a simulation. The whole station was covered in this analysis and 4 million grids were generated for this simulation. The fire driven flow was analyzed case by case to compare the smoke-spread effect according to the fire location. In order to enhance the efficiency of calculation, parallel processing by MPI was employed and LES(large eddy simulation) method in FDS code was adopted.
This paper concerns performance of a parallel digital signal processing system. The performance of the system is analyzed in terms of CPU cycles required for 1024-point FFT computation. The number of cycles is estimated in three different approaches; FFT algorithm-based, assembly level source code-based, and probability-based. The results of analysis indicate that on a bus-based system the best performance for FFT is achieved with a single board. Because in some applications like FFT, where frequent data exchanges among processors occur, the number of communication cycles increases as the number of boards. It is observed that inter-board communication degrades overall system performance for the FFT computation. Also shown is that linear increase in performance can be obtained if multiple buses are employed.
During the 4th Industrial Revolution, service platforms utilizing diverse contents are emerging, and research on recommended systems that can be customized to users to provide quality service is being conducted. hybrid recommendation systems that provide high accuracy recommendations are being researched in various domains, and various filtering techniques, machine learning, and deep learning are being applied to recommended systems. However, in a recommended service environment where data must be analyzed and processed real time, the accuracy of the recommendation is important, but the computational speed is also very important. Due to high level of model complexity, a hybrid recommendation system or a Deep Learning-based recommendation system takes a long time to calculate. In this paper, a Cascade-hybrid recommended algorithm is proposed that can reduce the computational time while maintaining the accuracy of the recommendation. The proposed algorithm was designed to reduce the complexity of the model and minimize the computational speed while processing sequentially, rather than using existing weights or using a hybrid recommendation technique handled in parallel. Therefore, through the algorithms in this paper, contents can be analyzed and recommended effectively and real time through services such as SNS environments or shared economy platforms.
Based on the given data if three experiments that measured word-by-word reading times of the Korean relative-clause sentences,parsing strategies and performance structures in comprehending Korean sentences were suggested.First,results of the significantily longer reading time of nouns than verbs suggested that Korean parsing processing would be primarily occurred at nouns.Seond,four parsing strategies were proposed to explain increased reading times,working memory loads,and parallel function effects.Third,performance structures of sentence comprehension were constructed from the interword reading time differences.The proposed strategies and structures seem to account for the patterns of word-by-word reading times of the five types of the Korean relative-clause se various ideas for further experimentation were discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.