Recently, in the field of computer animation, a method for generating motion using deep learning has been studied away from conventional finite-state machines or graph-based methods. The expressiveness of the network required for learning motions is more influenced by the diversity of motion contained in it than by the simple length of motion to be learned. This study aims to find an efficient network structure when the types of motions to be learned are diverse. In this paper, we train and compare three types of networks: basic fully-connected structure, mixture of experts structure that uses multiple fully-connected layers in parallel, recurrent neural network which is widely used to deal with seq2seq, and transformer structure used for sequence-type data processing in the natural language processing field.
Kim, Deok-Keun;Lee, Deok-Hae;Kong, Jin-Hwa;Lee, Un-Joo;Yoon, Jee-Hee
Annual Conference of KIPS
/
2011.04a
/
pp.1260-1263
/
2011
최근 차세대 시퀀싱 (Next Generation Sequencing, NGS) 기술이 발전하면서 DNA, RNA 등의 시퀀싱 데이터를 이용한 유전체 분석 방식에 관한 연구가 활발히 이루어지고 있다. 차세대 시퀀싱 데이터를 이용한 유전체 분석 방식은 마이크로어레이 혹은 EST/cDNA 데이터를 이용한 기존의 분석 방식에 비하여 비용이 적게 들고 정확한 결과를 얻을 수 있다는 장점이 있다. 그러나 이 들 DNA, RNA 시퀀싱 데이터는 각 시퀀스의 길이가 짧고 전체 용량은 매우 커서 이 들 데이터로부터 정확한 분석 결과를 추출하는 데에 많은 어려움이 있다. 본 연구에서는 클라우드 컴퓨팅 기술을 기반으로 하여 대용량의 RNA 시퀀싱 데이터를 고속으로 처리하는 병렬 SNP 추출 알고리즘을 제안한다. 전체 게놈 데이터 중 유전자 영역만을 high coverage로 시퀀싱하여 얻어지는 RNA 시퀀싱 데이터는 유전자 변이 추출을 목적으로 분석되며, SNP(Single Nucleotide Polymorphism)와 같은 유전자 변이는 질병의 원인 규명 및 치료법 개발에 직접 이용된다. 제안된 알고리즘은 동시에 실행되는 다수의 Map/Reduce 함수에 의해서 대규모 RNA 시퀀스를 병렬로 처리하며, 레퍼런스 시퀀스에 매핑된 각 염기의 출현 빈도와 품질점수를 이용하여 SNP를 추출한다. 또한 이 들 SNP 추출 결과에 대한 시각적 분석 도구를 제공하여 SNP 추출 과정 및 근거를 시각적으로 확인/검증할 수 있도록 지원한다.
Marine seismic refraction surveys have been carried out by Korea Institute of Geology, Mining and Materials(KIGAM) since 1984. The recording of refraction data was based on analog instrumentation. Therefore the resolution of refraction data was not good enough to distinguish many layers. The objective of the interpretation of seismic refraction data is the determination of intervals and critically refracted seismic wave propagation velocities through the layers beneath the sea floor. To determine intervals and velocities precisely, the resolution of refraction data should be enhanced. The intent of the study is to improve the quality of shallow marine refraction data by the digital technique using microcomputer- based acquisition and processing system. The system consists of an IBM AT microcomputer clone, an analog-digital(A/D) converter. A mass storage unit and a parallel processing board. The A/D converter has 12 bits of precision and 250 kHz of conversion rate. The magneto-optical disk drive is used for the mass storage of seismic refraction data. Shallow marine seismic refraction surveys have been carried out using the system at 6 locations off Ulsan and Pusan area. The refraction data were acquired by the radio sonobuoy. The refraction profiles have been produced by the laser printer with 300 dpi resolution after the basic computer processing. 5-9 layers were interpreted from digital refraction profiles, whereas 2-4 layers were interpreted from analog refraction profiles. the propagation velocities of sediments were interpreted as 1.6-2.1 km/sec. The propagation velocities of acoustic basement were interpreted as 2.4-2.7 km/sec off Ulsan area, 4.8 km/sec off Pusan area.
Journal of the Institute of Electronics Engineers of Korea TC
/
v.49
no.5
/
pp.15-20
/
2012
In this paper, we show new method to find the error locations of received Reed-Solomon code word. New design is much faster and has much simpler logic circuit than the former design method. This optimization was possible by very simplified square/$X^4$ calculating circuit, parallel processing and not using the very complex Divider. The Reed Solomon decoder using this new Chien Machine can be applicated for data protection of almost all digital communication and consumer electronic devices.
We parallelized WRF major physics routines for Nvidia GP-GPUs with CUDA Fortran. GP-GPUs are originally designed for graphic processing, but show high performance with low electricity for calculating numerical models. In the CUDA environment, a data domain is allocated into thread blocks and threads in each thread block are computing in parallel. We parallelized the WRF program to use of thread blocks efficiently. We validated the GP-GPU program with the original CPU program, and the WRF model using GP-GPUs shows efficient speedup.
The Journal of Korean Institute of Communications and Information Sciences
/
v.36
no.11C
/
pp.649-654
/
2011
In this paper, we show new method to find number of errors in the Reed-Solomon decoder. New design is much faster and has much simpler logic circuit than the former design method. This optimization was possible by very simplified square calculating circuit and parallel processing. The microcontroller of this Reed Solomon decoder can be used for data protection of almost all digital communication and consumer electronic devices.
Journal of the Korean Institute of Telematics and Electronics A
/
v.29A
no.11
/
pp.70-77
/
1992
Generally, the conventional tracking algorithms are very limited in the practical applications because of that the computation load is exponentially increased as the number of targets being tracked is increase. Recently, to overcome this kind of limitation, some new tracking methods based on neural network algorithms which have learning and parallel processing capabilities are introduced. By application of neural networks to multi-target tracking problems, the tracking system can be made computationally independent of the number of objects being tracked, through their characteristics of massive parallelism and dense interconnectivity. In this paper, a new neural network tracking algorithm, which has capability of adaptive target tracking with little increase of the amount of calculation under the clutter and noisy environments, is suggested and the possibility of real-time multi-target tracking system based on neural networks is also demonstrated through some good computer simulation results.
The Application of Artificial Neural Network(ANN) to forecast a load in a power system is investigated. The load forecasting is important in the electric utility industry. This technique, methodology based on the fact that parallel structure can process very fast much information is a promising approach to a load forecasting. ANN that is highly interconnected processing element in a hierachy activated by the each input. The load pattern can be divided distinctively into two patterns, that is, weekday and weekend. ANN is composed of a input layer, several hidden layers, and a output layer and the past data is used to activate input layer. The output of ANN is the load forecast for a given day. The result of this simulation can be used as a reference to a electric utility operation.
Journal of the Korean Society of Marine Environment & Safety
/
v.8
no.1
/
pp.127-137
/
2002
This paper deals with developing a Web-based Solver NRO(Network Reliability Optimizer) for solving three classes of reliability redundancy optimization problems which are generated in series systems. parallel systems and complex systems. Inputs of NRO consisted in four parts. that is, user authentication. system selection. input data and confirmation. After processing of inputs through internet, NRO provides conveniently the optimal solutions for the given problems on the Web-site. To alleviate the risks of being trapped in a local optimum, HH(Hybrid-Heuristic) algorithm is incorporated in NRO for solving the given three classes of problems, and moderately combined GA(Genetic Algorithm) with the modified SA(Simulated Annealing) algorithm.
In this paper A new theory of linear loop transformation called Elimination of Data Dependency(BDD) is presented. The current framework of linear loop transformation cannot identify a significant fraction of parallelism. For this reason, a method to extract the maximum loop parallelism in perfect nested loops is presented. This technique is applicable to general loop nests where the dependence include both distance and directions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.