The area of the prototype device is less than 80mm$^2$. Operating with a 60ns clock cycle, the device typically dissipates only 300mW. The full functionality was proven by using the methodical test programs based on typical image processing operations. Also, we realized the whole process from conventional gray image to color image. Format converters, implemented using multidimensional access memories, transfer the data between the processing element array and conventional bit-parallel components in real time. The completed system is fully functional and performs typical low-level image processing tasks at speed exceeding 30 frames of traditional TV system per second.
Journal of Institute of Control, Robotics and Systems
/
v.17
no.4
/
pp.328-335
/
2011
GPU (Graphics Processing Units) is consists of SIMD (Single Instruction Multiple Data) architecture and provides fast parallel processing. A GA (Genetic Algorithm), which requires large computations, is implemented in GPU using CUDA (Compute Unified Device Architecture). Three kinds of execution models are presented according to different combinations of processing modules in GPU. Comparison experiments between GPU models and CPU are tested for a couple of benchmark problems by variation of population sizes and complexity of problem sizes.
A 3D graphics pipeline is largely divided into geometry stage and rendering stage. In this paper, we propose a method that accelerates a geometry processing in multi-core GP-GPU, using dual-phase structure. It can be improved by parallel data processing using SIMD of GP-GPU, dual-phase structure and memory prefetch. The proposed architecture improves approximately 19% of performance when it use all the features.
시계열 데이터 처리를 위해 방대한 양의 데이터를 스토리지에서 빠르게 읽어와 처리하려는 움직임이 많아지고 있다. 이를 위해 스토리지의 read latency 를 개선하기 위한 여러 기법들이 제안되었지만, 이 기법들은 분산 노드의 스토리지 자원을 충분히 활용하지 못한다는 한계가 있다. 따라서 우리는 시계열 데이터를 실시간으로 처리하기 위해 스토리지에 병렬적으로 접근하여 read latency 를 개선하는 기법을 제안한다. 제안된 기법은 분산 환경에서 스토리지에 병렬적으로 접근하여, 각 노드에서 부분적으로 데이터를 읽어와 전체 데이터를 읽어오는 지연시간을 줄인다. 우리는 제안된 기법을 여러 노드로 구성된 분산 환경에서 구현하였다. 제안된 기법을 적용한 결과, 전체 데이터를 읽어오는 read latency 가 기존 기법보다 28.04% 줄어든 것을 확인하였다.
SCADA 시스템과 같이 대규모의 데이터를 일정 시간이내에 처리하는 시스템 환경에서 가장 중요한 요소 중 하나가 성능이다. 사용자에게 직관적이며 편리한 UI를 제공하며 개발자는 유지보수성, 재사용성 등을 충분히 고려하여 시스템을 구현하여도 일정 성능 이상을 만족시키지 못한다면 사용할 수가 없다. 이러한 점을 고려하여 본 논문에서는 앞으로 SCADA 시스템이 감시, 제어하는 설비의 증가와 시스템 규모의 다양성 및 확장성을 갖춰야 함을 인식하고 다양한 성능향상 방법 중 소프트웨어 측면에서 병렬화 기법을 이용한 데이터 처리 방법을 소개한다.
Deep Neural Networks (DNN) has become an essential data processing architecture for the implementation of multiple computer vision tasks. Recently, DNN-based algorithms achieve much higher recognition accuracy than traditional algorithms based on shallow learning. However, training and inference DNNs require huge computational capabilities than daily usage purposes of computers. Moreover, with increased size and depth of DNNs, CPUs may be unsatisfactory since they use serial processing by default. GPUs are the solution that come up with greater speed compared to CPUs because of their Parallel Processing/Computation nature. In this paper, we analyze the inference time complexity of DNNs using well-known computer vision library, OpenCV. We measure and analyze inference time complexity for three cases, CPU, GPU-Float32, and GPU-Float16.
Since a large amount of training data is typically needed to train Deep Neural Networks (DNNs), a parallel training approach is required to train the DNNs. The Stochastic Gradient Descent (SGD) algorithm is one of the most widely used methods to train the DNNs. However, since the SGD is an inherently sequential process, it requires some sort of approximation schemes to parallelize the SGD algorithm. In this paper, we review various efforts on parallelizing the SGD algorithm, and analyze the computational overhead, communication overhead, and the effects of the approximations.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.18
no.9
/
pp.698-706
/
2006
Experiment and numerical calculation have been peformed to investigate mixed convection heat transfer between inclined parallel plates. Particle image velocimetry (PIV) with thermo-sensitive liquid crystal (TLC) tracers is used for visualizing and analysis. This method allows simultaneous measurement of velocity and temperature fields at a given instant of time. Quantitative data of the temperature and velocity are obtained by applying the color-image processing to a visualized image, and neural network is applied to the color-to-temperature calibration. The governing equations are discretized using the finite volume method. The results are presented for the Reynolds number ranges from 0.004 to 0.062, the angle of inclination, ${\Theta}$, from 0 to 45 degree and Prandtl number of the high viscosity fluid is 909. The results show velocity, temperature and mean Nusselt numbers distributions. It is found that the periodic flow of mixed convection between inclined parallel plates is shown at $0^{\circ}{\leq}{\Theta}<30^{\circ}$, Re<0.062, and the flow pattern can be classified into three patterns which depend on Reynolds number and the angle of inclination. The minimum Nusselt numbers occur at Re=0.05 regardless of the angle of inclination.
KIPS Transactions on Software and Data Engineering
/
v.7
no.2
/
pp.63-68
/
2018
Interests in face recognition area have been increasing due to diverse emerging applications. Face recognition algorithm from a two-dimensional source could be challenging in dealing with some circumstances such as face orientation, illuminance degree, face details such as with/without glasses and various expressions, like, smiling or crying. Hopfield Network capabilities have been used specially within the areas of recalling patterns, generalizations, familiarity recognitions and error corrections. Based on those abilities, a specific experimentation is conducted in this paper to apply the Redundant Parallel Hopfield Network on a face recognition problem. This new design has been experimentally confirmed and tested to be robust in any kind of practical situations.
The objective of this paper describes the design of MapReduce over Peer-to-Peer network for dynamic environments applications. MapReduce is a software framework used for Cloud Computing which processing large data sets in a highly-parallel way. Based on the Peer-to-Peer network character which node failures will happen anytime, we focus on using a DHT routing protocol which named Pastry to handle the problem of node failures. Our results are very promising and indicate that the framework could have a wide application in P2P network systems while maintaining good computational efficiency and scalability. We believe that, P2P networks and parallel computing emerge as very hot research and development topics in industry and academia for many years to come.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.