• Title/Summary/Keyword: Parallel data processing

Search Result 751, Processing Time 0.038 seconds

Analysis of Stator-Rotor Interactions by using Parallel Computer (정익-동익 상호작용의 병렬처리해석)

  • Lee J. J.;Choi J. M.;Lee D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.111-114
    • /
    • 2004
  • CFD code that simulates stator-rotor interactions is developed applying parallel computing method. Modified Multi-Block Grid System which enhances perpendicularity in grid and is appropriate in parallel processing is introduced and Patched Algorithm is applied in sliding interface which is caused by movement of rotor. The experimental model in the turbo-machine is composed of 11 stators and 14 rotors. Analyses on two test cases which are one stator - one rotor model and three stators - four rotors model are performed. The results of the two cases have been compared with the experimental test data.

  • PDF

Implement for Mobile Robot using the Ultrasonic sensors and the DSP Image Processing (DSP 영상처리와 초음파 센서를 이용한 이동 로봇 구현)

  • 김용준;문철홍
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.151-154
    • /
    • 2000
  • Standard of implementing a robot is Man, so in many field, Many studies are processing to archive a robot, very similar to human being. This paper, based on the theory of man, implemented on the model of parallelism sense and visual information, which is needed when it's moving. Introduced robot uses CCD and designed Image Processing Board for the purpose of archiving vision data. To keep parallel condition, This use ultrasonic sensors for auto-mobile.

  • PDF

The Bigdata Processing Environment Building for the Learning System (학습 시스템을 위한 빅데이터 처리 환경 구축)

  • Kim, Young-Geun;Kim, Seung-Hyun;Jo, Min-Hui;Kim, Won-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.7
    • /
    • pp.791-797
    • /
    • 2014
  • In order to create an environment for Apache Hadoop for parallel distributed processing system of Bigdata, by connecting a plurality of computers, or to configure the node, using the configuration of the virtual nodes on a single computer it is necessary to build a cloud fading environment. However, be constructed in practice for education in these systems, there are many constraints in terms of cost and complex system configuration. Therefore, it is possible to be used as training for educational institutions and beginners in the field of Bigdata processing, development of learning systems and inexpensive practical is urgent. Based on the Raspberry Pi board, training and analysis of Big data processing, such as Hadoop and NoSQL is now the design and implementation of a learning system of parallel distributed processing of possible Bigdata in this study. It is expected that Bigdata parallel distributed processing system that has been implemented, and be a useful system for beginners who want to start a Bigdata and education.

RDFS Rule based Parallel Reasoning Scheme for Large-Scale Streaming Sensor Data (대용량 스트리밍 센서데이터 환경에서 RDFS 규칙기반 병렬추론 기법)

  • Kwon, SoonHyun;Park, Youngtack
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.686-698
    • /
    • 2014
  • Recently, large-scale streaming sensor data have emerged due to explosive supply of smart phones, diffusion of IoT and Cloud computing technology, and generalization of IoT devices. Also, researches on combination of semantic web technology are being actively pushed forward by increasing of requirements for creating new value of data through data sharing and mash-up in large-scale environments. However, we are faced with big issues due to large-scale and streaming data in the inference field for creating a new knowledge. For this reason, we propose the RDFS rule based parallel reasoning scheme to service by processing large-scale streaming sensor data with the semantic web technology. In the proposed scheme, we run in parallel each job of Rete network algorithm, the existing rule inference algorithm and sharing data using the HBase, a hadoop database, as a public storage. To achieve this, we implement our system and evaluate performance through the AWS data of the weather center as large-scale streaming sensor data.

A Study on Parallel Performance Optimization Method for Acceleration of High Resolution SAR Image Processing (고해상도 SAR 영상처리 고속화를 위한 병렬 성능 최적화 기법 연구)

  • Lee, Kyu Beom;Kim, Gyu Bin;An, Sol Bo Reum;Cho, Jin Yeon;Lim, Byoung-Gyun;Kim, Dong-Hyun;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.503-512
    • /
    • 2018
  • SAR(Synthetic Aperture Radar) is a technology to acquire images by processing signals obtained from radar, and there is an increasing demand for utilization of high-resolution SAR images. In this paper, for high-speed processing of high-resolution SAR image data, a study for SAR image processing algorithms to achieve optimal performance in multi-core based computer architecture is performed. The performance deterioration due to a large amount of input/output data for high resolution images is reduced by maximizing the memory utilization, and the parallelization ratio of the code is increased by using dynamic scheduling and nested parallelism of OpenMP. As a result, not only the total computation time is reduced, but also the upper bound of parallel performance is increased and the actual parallel performance on a multi-core system with 10 cores is improved by more than 8 times. The result of this study is expected to be used effectively in the development of high-resolution SAR image processing software for multi-core systems with large memory.

Implementation of LTE uplink System for SDR Platform using CUDA and UHD (CUDA와 UHD를 이용한 SDR 플랫폼 용 LTE 상향링크 시스템 구현)

  • Ahn, Chi Young;Kim, Yong;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.81-87
    • /
    • 2013
  • In this paper, we present an implementation of Long Term Evolution (LTE) Uplink (UL) system on a Software Defined Radio (SDR) platform using a conventional Personal Computer (PC), which adopts Graphic Processing Units (GPU) and Universal Software Radio Peripheral2 (USRP2) with URSP Hardware Driver (UHD) for SDR software modem and Radio Frequency (RF) transceiver, respectively. We have adopted UHD because UHD provides flexibility in the design of transceiver chain. Also, Cognitive Radio (CR) engine have been implemented by using libraries from UHD. Meanwhile, we have implemented the software modem in our system on GPU which is suitable for parallel computing due to its powerful Arithmetic and Logic Units (ALUs). From our experiment tests, we have measured the total processing time for a single frame of both transmit and receive LTE UL data to find that it takes about 5.00ms and 6.78ms for transmit and receive, respectively. It particularly means that the implemented system is capable of real-time processing of all the baseband signal processing algorithms required for LTE UL system.

Reevaluating the overhead of data preparation for asymmetric multicore system on graphics processing

  • Pei, Songwen;Zhang, Junge;Jiang, Linhua;Kim, Myoung-Seo;Gaudiot, Jean-Luc
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3231-3244
    • /
    • 2016
  • As processor design has been transiting from homogeneous multicore processor to heterogeneous multicore processor, traditional Amdahl's law cannot meet the new challenges for asymmetric multicore system. In order to further investigate the impact factors related to the Overhead of Data Preparation (ODP) for Asymmetric multicore systems, we evaluate an asymmetric multicore system built with CPU-GPU by measuring the overheads of memory transfer, computing kernel, cache missing and synchronization. This paper demonstrates that decreasing the overhead of data preparation is a promising approach to improve the whole performance of heterogeneous system.

Parallel Processing of Satellite Images using CUDA Library: Focused on NDVI Calculation (CUDA 라이브러리를 이용한 위성영상 병렬처리 : NDVI 연산을 중심으로)

  • LEE, Kang-Hun;JO, Myung-Hee;LEE, Won-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.29-42
    • /
    • 2016
  • Remote sensing allows acquisition of information across a large area without contacting objects, and has thus been rapidly developed by application to different areas. Thus, with the development of remote sensing, satellites are able to rapidly advance in terms of their image resolution. As a result, satellites that use remote sensing have been applied to conduct research across many areas of the world. However, while research on remote sensing is being implemented across various areas, research on data processing is presently insufficient; that is, as satellite resources are further developed, data processing continues to lag behind. Accordingly, this paper discusses plans to maximize the performance of satellite image processing by utilizing the CUDA(Compute Unified Device Architecture) Library of NVIDIA, a parallel processing technique. The discussion in this paper proceeds as follows. First, standard KOMPSAT(Korea Multi-Purpose Satellite) images of various sizes are subdivided into five types. NDVI(Normalized Difference Vegetation Index) is implemented to the subdivided images. Next, ArcMap and the two techniques, each based on CPU or GPU, are used to implement NDVI. The histograms of each image are then compared after each implementation to analyze the different processing speeds when using CPU and GPU. The results indicate that both the CPU version and GPU version images are equal with the ArcMap images, and after the histogram comparison, the NDVI code was correctly implemented. In terms of the processing speed, GPU showed 5 times faster results than CPU. Accordingly, this research shows that a parallel processing technique using CUDA Library can enhance the data processing speed of satellites images, and that this data processing benefits from multiple advanced remote sensing techniques as compared to a simple pixel computation like NDVI.

Parallel lProcessing of Pre-conditioned Navier-Stokes Code on the Myrinet and Fast-Ethernet PC Cluster (Myrinet과 Fast-Ethernet PC Cluster에서 예조건화 Navier-Stokes코드의 병렬처리)

  • Lee, G.S.;Kim, M.H.;Choi, J.Y.;Kim, K.S.;Kim, S.L.;Jeung, I.S.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.21-30
    • /
    • 2002
  • A preconditioned Navier-Stokes code was parallelized by the domain decomposition technique, and the accuracy of the parallelized code was verified through a comparison with the result of a sequential code and experimental data. Parallel performance of the code was examined on a Myrinet based PC-cluster and a Fast-Ethernet system. Speed-up ratio was examined as a major performance parameter depending on the number of processor and the network communication topology. In this test, Myrinet system shows a superior parallel performance to the Fast-Ethernet system as was expected. A test for the dependency on problem size also shows that network communication speed in a crucial factor for parallel performance, and the Myrinet based PC-cluster is a plausible candidate for high performance parallel computing system.

Design of Parallel Processing of Lane Detection System Based on Multi-core Processor (멀티코어를 이용한 차선 검출 병렬화 시스템 설계)

  • Lee, Hyo-Chan;Moon, Dai-Tchul;Park, In-hag;Heo, Kang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1778-1784
    • /
    • 2016
  • we improved the performance by parallelizing lane detection algorithms. Lane detection, as a intellectual assisting system, helps drivers make an alarm sound or revise the handle in response of lane departure. Four kinds of algorithms are implemented in order as following, Gaussian filtering algorithm so as to remove the interferences, gray conversion algorithm to simplify images, sobel edge detection algorithm to find out the regions of lanes, and hough transform algorithm to detect straight lines. Among parallelized methods, the data level parallelism algorithm is easy to design, yet still problem with the bottleneck. The high-speed data level parallelism is suggested to reduce this bottleneck, which resulted in noticeable performance improvement. In the result of applying actual road video of black-box on our parallel algorithm, the measurement, in the case of single-core, is approximately 30 Frames/sec. Furthermore, in the case of octa-core parallelism, the data level performance is approximately 100 Frames/sec and the highest performance comes close to 150 Frames/sec.