The Journal of Korean Association of Computer Education
/
v.8
no.1
/
pp.93-103
/
2005
Since the most program execution time is consumed in a loop structure, extracting parallelism from sequential loop programs is critical for the faster program execution. Conventional studies for extracting the parallelism are focused mostly on a uniform data dependence distance. In this paper, we proposed data dependency elimination method for a nested loop and extended data dependency elimination method to extract parallelism from the loop with procedure calls. The data dependency elimination method and the extended data dependency elimination method can be applied to uniform and non-uniform data dependency distance. We compared our method with conventional methods using CRAY-T3E for the performance evaluation. The results show that the proposed algorithms are very effective.
Journal of the Korea Society of Computer and Information
/
v.22
no.11
/
pp.57-63
/
2017
The recent sudden increase of big data has characteristics such as continuous generation of data, large amount, and unstructured format. The existing relational database technologies are inadequate to handle such big data due to the limited processing speed and the significant storage expansion cost. Thus, big data processing technologies, which are normally based on distributed file systems, distributed database management, and parallel processing technologies, have arisen as a core technology to implement big data repositories. In this paper, we propose a design methodology for large-scale database based on MongoDB by extending the information engineering methodology based on E-R data model.
The Transactions of the Korea Information Processing Society
/
v.3
no.2
/
pp.315-326
/
1996
As the complexity of VLSI circuits has increased, a lot of simulation time for verifying their correctness has been required. This paper presents efficient parallelel logic simulation protocols, data structures, algorithms to implement fast logic simulation on SIMD parallel processing computers. The performance results of the presented schemes on CM-2 are given and analyzed.
The Transactions of the Korea Information Processing Society
/
v.5
no.4
/
pp.942-950
/
1998
Extraction of knowledge, especially in the form of rules, from raw data is very important in data mining, the aim of which is to help users who feel the lack of knowledge in spite of the abundance of data. Logic minimization tools are ones which derive optimized knowledge given ON set and DC set. First, the parallel expansion scheme of logic minimization is extracted and used to obtain intial knowledge to get final rules, which are successfully applicable to real world data. The prototype system based on this new approach has been experimented with real world data to show that it is as practical as conventional long studied decision tree methods like C4.5 system.
Journal of the Korea Society of Computer and Information
/
v.13
no.2
/
pp.11-17
/
2008
The net shape effects by the various vectors in underwater. Each particle of the net calculating the effect of all vectors augments an accuracy and reality. But, the time complexity becomes larger because of huge calculation. The previous techniques reduced a physics reality. And embodied the underwater virtual reality which augments visual reality with simulation. In this paper, parallel processing the particles, it embodied the simulation which is satisfied a physical reality and time reality. The parallel processing used the OpenMP, and the reality graphic expression used the OpenGL. The simulation which this paper Proposes will be the possibility becoming the fundamental data for a model analysis or a specialist system from game and marine field.
With the increasing demand of processing massive geographic data, conventional GISs based on the single processor architecture appear to be problematic. Especially, performing complex GIS operations on the massive geographic data is very time consuming and even impossible. This is due to the processor speed development does not keep up with the data volume to be processed. In the field of GIS, this PC clustering is one of the emerging technology for handling massive geographic data effectively. In this study, a MPI(Message Passing Interface)-based parallel processing approach was conducted to implement the existing raster GIS operations that typically requires massive geographic data sets in order to improve the processing capabilities and performance. Specially for this research, four types of raster CIS operations that Tomlin(1990) has introduced for systematic analysis of raster GIS operation. A data decomposition method was designed and implemented for selected raster GIS operations.
GPUs were originally designed for graphic processing, and GPGPUs are general-purpose GPUs for numerical computation with high performance and low electric power. In this paper, we implemented the parallel LU factorization program for GPGPUs. In CUDA, which is computational environment for Nvidia GPGPUs, domains are divided into blocks, and multi-threads compute each sub-blocks Simultaneously. In LU factorization program, computation order should be artificially decided due to the data dependence. To resolve the data dependancy, we suggested a parallel LU program for GPGPUs, and also explained parallel reduction algorithm for partial pivoting of LU factorization. We finally present performance analysis to show efficiency of the parallel LU factorization program based on multi-threads on GPGPUs.
The Transactions of the Korea Information Processing Society
/
v.2
no.4
/
pp.554-560
/
1995
In this paper, we suggest a parallel algorithm to merge priority queues organized in two heaps, kheap and nheap of sizes k and n, correspondingly. Employing max(2$^{-1}$, $\ulcorner$(m+1)/4$\lrcorner$'s processors, this algorithm requires O(log(n/k)*log(n)) on an EREW-PRAM, where i is the height of the heap and m is the summation of sizes n and k. Also, when we run it on the MasPar machine, this method achieves a 33.934-fold speedup with 64 processors to merge 8 million data items which consist of two heaps of different sizes. So our parallel algorithm's EPU is close to 1, which is considered as an optimal speedup ratio.eedup ratio.
Journal of the Korean Data and Information Science Society
/
v.24
no.5
/
pp.989-998
/
2013
We cannot analyze big data, which attracts recent attentions in industry and academy, by batch processing algorithms developed in data mining because big data, by definition, cannot be uploaded and processed in the memory of a single system. So an imminent issue is to develop various leaning algorithms so that they can be applied to big data. In this paper, we review various algorithms for support vector machines in the literature. Particularly, we introduce online type and parallel processing algorithms that are expected to be useful in big data classifications and compare the strengths, the weaknesses and the performances of those algorithms through simulations for linear classification.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.46
no.6
/
pp.44-55
/
2009
Diagnosis of diseases using gene expression data obtained from microarray chip is an active research area recently. It has been done by general machine learning algorithms, because it is difficult to analyze directly. However, recent research results about the analysis based on the interaction between genes is essential for the gene expression analysis, which means the analysis using the traditional machine learning algorithms has limitations. In this paper, we classify the gene expression data using the hyper-network model that considers the higher-order correlations between the features, and then compares the classification accuracies. And also, we present the new hypo-network model that improve the disadvantage of existing model, and compare the processing performances of the existing hypo-network model based on general sequential processor and the improved hypo-network model implemented on parallel processors. In the experimental results, we show that the performance of our model shows improved and competitive classification performance than traditional machine learning methods, as well as, the existing hypo-network model. We show that the performance is maximized when the hypernetwork model is implemented on our parallel processors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.