• Title/Summary/Keyword: Parallel UPS

Search Result 72, Processing Time 0.029 seconds

Voltage Control Strategy of new 3-phase Line-Interactive UPS System using AC Line Reactor and Parallel-Series Active Filter (AC 라인 리액터와 병렬 및 직렬 능동필터를 가지는 새로운 3상 Line-Interactive UPS 시스템의 전압제어 방식)

  • Ji, Jun-Keun;Kim, Jang-Hwan;Sul, Seung-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.538-546
    • /
    • 2007
  • A new 3-phase line-interactive UPS(Uninterruptible Power Supply) system with parallel-series active power-line conditioning capability using AC line reactor and two four-leg PWM VSCs(Voltage Source Converters) was introduced recently. In this paper, the strategy of voltage control in suggested UPS system is explained. The objective of proposed voltage controllers in parallel(shunt) and series PWM VSC is to guarantee satisfactory characteristics in steady state and transient state. Therefore the experimental results to prototype UPS system having power rating of 60kVA is shown to prove the verification of voltage control strategy.

A Study on a Single-Phase Module UPS using a Three-Arm Converter/Inverter

  • Choi Y.K.;Ko T.G.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.987-993
    • /
    • 2003
  • The module UPS can flexibly implement expansion of power system capacities. Furthermore, it can be used to build up the parallel redundant system to improve the reliability of power system operation. To realize the module UPS, load sharing without interconnection among parallel connecting modules as well as a small scale and lightweight topology is necessary. In this paper, the three-arm converter/inverter is compared with the general full-bridge and half-bridge topology from a practical point of view and chosen as the module UPS topology. The switching control approaches based on a pulse width modulation of the converter and inverter of the system are presented independently The frequency and voltage droop method is applied to parallel operation control to achieve load sharing. Two prototype 3kVA modules are designed and implemented to confirm the effectiveness of the proposed approaches. Experimental results show that the three-arm UPS system has a high power factor, a low distortion of output voltage and input current, and good load sharing characteristic.

  • PDF

Wireless Parallel Operation Control of N+l Redundant UPS System (독립제어구조를 갖는 N+1 모듈형 UPS 시스템의 병렬운전)

  • 조준석;한재원;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.499-508
    • /
    • 2002
  • In this paper, a novel wireless parallel operation algorithm of N+l redundant UPS system with no control interconnections for load-sharing is presented. The proposed control system eliminates the sensing noise and interconnections interference of conventional parallel operation system. To reduce a reactive power deviation in wireless control method, this technique automatically compensates for inverter parameter variation and line impedance imbalances with wireless auto-tuning method. In addition, to increase reliability on transient characteristics of parallel operation, a virtual injected impedance is adopted to eliminate a circulation current among inverter modules. Simulation results are provided in this paper to prove the proposed novel wireless algorithm.

A Master and Slave Control Algorithm for Parallel Operation of Modular 3-Phase UPS System (모듈형 3상 무정전 전원장치의 병렬 운전을 위한 주종 제어 알고리즘)

  • Lee, Taeyeong;Cho, Younghoon;Lim, Seung Beom;Ahn, Chang Heon
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.479-480
    • /
    • 2016
  • This paper introduces a master and slave control algorithm for parallel operation of UPS system. If each module of UPS system control the output voltage and filter inductor current in parallel operation, it occur unbalanced output power each module. To operate UPS system parallel, it need a algorithm that control output power of modules. A master and slave control algorithm is helpful to balance output power of modules by controlling output current. The effect of a master and slave control algorithm is proved by simulations.

  • PDF

An Equivalent Load Sharing by Wireless Parallel Operation Control in UPS

  • Byun, Young-Bok;Koo, Tae-Geun;Joe, Ki-Yeon;Kim, Dong-Hee;Kim, Chul-U
    • Journal of KIEE
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2000
  • An equivalent load sharing control based on the frequency and voltage droop concept for parallel operation of two three-phase Uninterruptible Power Supply (UPS) systems with no control interconnection lines is presented in this paper. First of all, due to the use of active power and reactive power as control variables, the characteristics of output powers according to amplitude and phase differences between output voltages of two UPS systems are analyzed. Secondly, simulation results under different line impedance demonstrate the feasibility of the wireless parallel operation control. Finally, experiments are presented to verify the theoretical discussion with two three-phase 20kVA UPS systems employed TMS320C32, a kind of real time digital signal processor (DSP).

  • PDF

The Parallel Operation Control Technique of UPS System (UPS시스템의 병렬운전 제어기법)

  • Lee Sang-Hoon;Lee Woo-Cheol;Kim Kyong-Hwan;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.158-162
    • /
    • 2002
  • The parallel operation system of multiple UPS(Uninterruptible Power Supply) is used to increase power capacity of the system or to secure higher reliability at critical loads. In the parallel operation of the two UPSs, the load sharing control to maintain the current balance between them is a matter of consequence. In this paper, a highly precise load sharing controller is proposed and implemented for the parallel operation system of two UPSs. After that, a good performance of the proposed method is verified by simulation in the parallel operation system with two UPSs.

  • PDF

A Study on a Single-Phase Module UPS using a Three-Arm Converter/Inverter

  • Koo, Tae-Geun;Byun, Young-Bok;Joe, Ki-Yeon;Kim, Dong-Hee;Kim, Chul-U
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.44-51
    • /
    • 2003
  • The module UPS can flexibly implement expansion of power system capacities. Further-more, it can be used to build up the parallel redundant system to improve the reliability of power system operation. To realize the module UPS, load sharing without interconnection among parallel connecting modules as well as a small scale and lightweight topology is necessary. In this paper, the three-arm converter/inverter is compared with the general full-bridge and half-bridge topology from a practical point of view and chosen as the module UPS topology. The switching control approaches based on a pulse width modulation of the converter and inverter of the system are presented independently. The frequency and voltage droop method is applied to parallel operation control to achieve load sharing. Two prototype 3㎸A modules are designed and implemented to confirm the effectiveness of the pro-posed approaches. Experimental results show that the three-arm UPS system has a high power factor, a low distortion of output voltage and input current, and good load sharing characteristics.

Wireless Parallel Operation Control of N+1 Redundant UPS System (독립제어구조를 갖는 N+1 모듈형 UPS 시스템의 병렬운전)

  • Cho Jun-Seok;Han Jae-Won;Choe Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.734-738
    • /
    • 2002
  • In this paper, a novel wireless parallel operation algorithm of N+1 redundant UPS system with no control interconnections is presented. The load sharing of multiple UPS modules are controlled by Q-V droop and $P-\delta$ droop algorithm. This algorithm compensates for inverter parameter variation and line impedance imbalances with wireless auto-tuning method. And to increase the reliability of transient characteristic under parallel operation, a virtual injected Impedance is proposed to decrease a circulation current between inverter modules. Simulation results are provided to prove the novel wireless algorithm.

  • PDF

Parallel Operation Method of Single Phase UPS Module Considering Battery State of Charg (배터리 잔존용량을 고려한 단상 UPS 모듈의 병렬 운전 기법)

  • Kang, Jin-Wook;Choi, Bong-Yeon;Kim, Min-Gi;Lee, Taeck-Kie;Wo, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.461-462
    • /
    • 2014
  • This paper proposes parallel operation method of single phase UPS module considering the battery SOC. A master module performs output voltage control and current sharing algorithm considering battery SOC of each UPS modules. The slave modules control output current by current reference from master module. The applied parallel operation method is verified by the PSIM simulation.

  • PDF

10KVA Series-Parallel compensated UPS (10KVA 급 직병렬 보상형 무정전 전원 장치)

  • Jeon, Seong-Jeub;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1083-1086
    • /
    • 2000
  • In this paper a development of 10KVA series-parallel compensated UPS is shown, which has high input power factor and sinusoidal output voltage regulation capability. Compared to conventional cascaded UPS, the size can be reduced significantly with high quality input and output waveforms. The front converter and the main inverter can be considered decoupled, hence the front converter and the main inverter can be designed independent of each other. In this paper, analysis and experimental results for an 10 KVA prototype are presented.

  • PDF