• 제목/요약/키워드: Parallel Type Hybrid Drivetrain

검색결과 5건 처리시간 0.036초

병렬형 하이브리드 동력전달계의 성능 민감도 해석 (Porformance Sensitivity Analysis of the Parallel Type Hybrid Drivetrain System for the Transit Bus)

  • 조성태;전순일;이장무;박영일;조한상
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.72-84
    • /
    • 2000
  • To analyze the correlation between drivetrain systems and to optimize the vehicle design with satisfying of the initial design objects, the performance sensitivity analysis through the iterative design procedure must be carried out. In this study, effects of the design parameters for the main components of the parallel type hybrid drivetrain system are analyzed by using the developed method of the vehicle performance simulation, and the basis of the optimal selection of the design parameters from the relation of design constraints and required performances is suggested. In driving control of the parallel hybrid vehicle, power split ratio is the most important factor, and the improved drivetrain system can be constructed through the only change of the algorithm for determination of the power spilt ratio, which is strongly applicable to the driving patterns and the environments. Therefore, Various techniques, such as the change of the weighting factors and the range extended algorithm, are suggested and evaluated in this paper.

  • PDF

버스용 병렬형 하이브리드 동력전달계의 개발 (VI) 제 6 편 : 하이브리드 동력전달계용 자동화 변속기의 변속 질 향상을 위한 변속 제어 알고리듬의 개발 (A Development of Parallel Type Hybrid Drivetrain System for Transit Bus Part 6 : A Development of Shift Control Algorithm for Improving the Shift Characteristics of the Hybrid Drivetrain with AMT)

  • 조성태;전순일;조한상;박영일;이장무
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.105-114
    • /
    • 2001
  • In this study, a shift control algorithm far improving the shift quality of a parallel hybrid drivetrain with an automated manual transmission (AM) is proposed. The general AMT requires the sophisticated control of clutch in the clutch engagement to improve its shift characteristics, and that is generally known to be difficult. But in this hybrid drivetrain, we can control the speeds of clutch plates by engine and motor control, and it provides the easier clutch control in shift process than general AMT. Additionally, it permits the much-reduced shift shock. The motor control during the shift period is also to achieve reduced velocity drop of the vehicle in comparison with that of a general AMT. Furthermore various dynamometer-based experiments are carried out to prove the validity of the proposed shift control algorithm.

  • PDF

버스용 병렬형 하이브리드 동력전달계의 개발(II) 제2편 : 자동화변속기가 장착된 하이브리드 차량의 향상된 변속 제어 알고리듬 개발 (A Development of Parallel Type Hybrid Drivetrain System for Transit Bus Part 2 : A Development of Advanced Shift Control Algorithm for Hybrid Vehicle with Automated Manual Transmission)

  • 조한상;조성태;이장무;박영일
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.96-106
    • /
    • 1999
  • In this study, the advanced shift control algorithm for parallel type hybrid drivetrain system with automated manual transmission(AMT) is proposed. The AMT can be easily realized by mounting the pneumatic actuators and sensors on the clutch and shift levers of the conventional manual transmission. By using the electronic-controlled AMT, engine and induction machine, it is possible to achieve the integrated control of overall system for the efficiency and the performance of the vehicle. Performing the speed control of the induction machine and the engine, the synchronization at gear shifting and the smooth engagement of clutch can be guaranteed. And it enables to reduce the shift shock and shorten the shift time. Hence, it results in the improvement of shift quality and the driving comfort of the vehicle. Dynamometer-based experiments are carried out to prove the validity of the proposed shift control algorithm.

  • PDF

버스용 병렬형 하이브리드 동력전달계의 개발(III) 제 3 편;최적 주행 제어 알고리즘 (A Development of Parallel Type Hybrid Drivetrain System for Transit Bus Part 3 : Optimal Driving Control Algorithm)

  • 조한상;이장무;박영일
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.182-197
    • /
    • 1999
  • Described in this paper is an optimal driving control algorithm which focused on the improvement of fuel economy and the minimization of pollutant emissions in the parallel type hybrid drivertrain system for transit bus. For the energy balance among components such as engine, induction machine and buttery, the algorithm for power split ration determine is proposed. When it is implemented in the hybrid electric control unit(HECU) , using the sub-optimal method and the approximate technique , it is possible to save the memory , to shorten the calculation time, and to achieve the efficient driving actually. A Shift strategy for automated manual transmission is the other side of the driving control algorithm. It enables to select the optimal gear by using several shift maps which were predefined from the proposed method in this paper, As a results of driving simulation, it is proved that these algorithms make the hybrid drivetrain system to reduce fuel consumption and emissions considerably and to have the ability to the efficient use of battery.

  • PDF

자동화 변속기를 장착한 버스용 병렬형 하이브리드 동력전달계의 변속 특성 해석과 승차감에 관한 연구 (A Study on the Analysis of the Shift Characteristics and the Driving Comfort for the Parallel Type hybrid Drivertrain System for Transit Bus equipped AMT)

  • 조한상;이장무;박영일
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.136-148
    • /
    • 1999
  • Detailed mathematical models of hybrid drivertrain components are presented and numerical simulations are carried out to analyze the shift characteristics and to improve the driving comfortability when the hybrid drivetrain is applied at the vehicle . Theoretical results are compared with experimental ones from the dynamometer as same condition in order to prove the appropriateness of modeling . Adding the vehicle body modeling, included in the suspension and the engine mount, it is possible to predict the dynamic behavior and shift characteristics more actually when shifts are occurred by automated manual transmission(AMT). these additional results are also compared with the same simulation ones of internal combustion engined vehicle equipped conventional manual transmission. Hence, it can be expected that the hybrid vehicle with AMT has a good shift quality.

  • PDF