• Title/Summary/Keyword: Parallel Turbo Decoder

Search Result 22, Processing Time 0.019 seconds

Design of a High Throughput Parallel Turbo Decoder (고 처리율 병렬 터보 복호기 설계)

  • Lee, Won-Ho;Park, Heemin;Rim, Chong S.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.50-57
    • /
    • 2013
  • This paper provides a design of high-throughput parallel turbo decoder that is able to decode several packets of various length simultaneously. For high-speed communications, designing of Turbo decoder as parallel structures reduces the long decoding time caused by iterative turbo decode way. Also, by employing the double buffer structure for input and output packets improves the decoder throughput by enabling continuous decoding. Because parallel turbo decoder is designed to be able to decode the packet of the longest length, there exist idle PE's(Processing Element) in the case of decoding packets of short length. The main idea of this paper is to increase the utilization of PE's in parallel Turbo decoder and to improve the decoder throughput by using the idle PE's immediately for the subsequent packets decoding. For this, the control is necessary to enable the concurrent decoding of several short packets and we propose the method of this control. Applying the proposed method, we implemented Turbo Decoder with 32 PE's that can decode packets of 6144 bits maximum. Compared to the conventional Turbo decoder, although the area was increased about 16%, the decoder throughput was improved 28 times for short packets.

High Speed Turbo Product Code Decoding Algorithm (고속 Turbo Product 부호 복호 알고리즘 및 구현에 관한 연구)

  • Choi Duk-Gun;Lee In-Ki;Jung Ji-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.442-449
    • /
    • 2005
  • In this paper, we introduce three kinds of simplified high-speed decoding algorithms for turbo product decoder. First, A parallel decoder structure, the row and column decoders operate in parallel, is proposed. Second, HAD(Hard Decision Aided) algorithm is used for early-stopping algorithm. Lastly, P-Parallel TPC decoder is a parallel decoding scheme, processing P rows and P columns in parallel instead of decoding one by one as that in the original scheme.

A 18-Mbp/s, 8-State, High-Speed Turbo Decoder

  • Jung Ji-Won;Kim Min-Hyuk;Jeong Jin-Hee
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.3
    • /
    • pp.147-154
    • /
    • 2006
  • In this paper, we propose and present implementation results of a high-speed turbo decoding algorithm. The latency caused by (de) interleaving and iterative decoding in a conventional maximum a posteriori(MAP) turbo decoder can be dramatically reduced with the proposed design. The source of the latency reduction is come from the combination of the radix-4, dual-path processing, parallel decoding, and rearly-stop algorithms. This reduced latency enables the use of the turbo decoder as a forward error correction scheme in real-time wireless communication services. The proposed scheme results in a slight degradation in bit-error rate(BER) performance for large block sizes because the effective interleaver size in a radix-4 implementation is reduced to half, relative to the conventional method. Fixed on the parameters of N=212, iteration=3, 8-states, 3 iterations, and QPSK modulation scheme, we designed the adaptive high-speed turbo decoder using the Xilinx chip (VIRTEX2P (XC2VP30-5FG676)) with the speed of 17.78 Mb/s. From the results, we confirmed that the decoding speed of the proposed decoder is faster than conventional algorithms by 8 times.

An FPGA Design of High-Speed Turbo Decoder

  • Jung Ji-Won;Jung Jin-Hee;Choi Duk-Gun;Lee In-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.450-456
    • /
    • 2005
  • In this paper, we propose a high-speed turbo decoding algorithm and present results of its implementation. The latency caused by (de)interleaving and iterative decoding in conventional MAP turbo decoder can be dramatically reduced with the proposed scheme. The main cause of the time reduction is to use radix-4, center to top, and parallel decoding algorithm. The reduced latency makes it possible to use turbo decoder as a FEC scheme in the real-time wireless communication services. However the proposed scheme costs slight degradation in BER performance because the effective interleaver size in radix-4 is reduced to an half of that in conventional method. To ensure the time reduction, we implemented the proposed scheme on a FPGA chip and compared with conventional one in terms of decoding speed. The decoding speed of the proposed scheme is faster than conventional one at least by 5 times for a single iteration of turbo decoding.

An FPGA Implementation of High-Speed Adaptive Turbo Decoder

  • Kim, Min-Huyk;Jung, Ji-Won;Bae, Jong-Tae;Choi, Seok-Soon;Lee, In-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.379-388
    • /
    • 2007
  • In this paper, we propose an adaptive turbo decoding algorithm for high order modulation scheme combined with originally design for a standard rate-1/2 turbo decoder for B/QPSK modulation. A transformation applied to the incoming I-channel and Q-channel symbols allows the use of an off-the-shelf B/QPSK turbo decoder without any modifications. Adaptive turbo decoder process the received symbols recursively to improve the performance. As the number of iterations increase, the execution time and power consumption also increase as well. The source of the latency and power consumption reduction is from the combination of the radix-4, dual-path processing, parallel decoding, and early-stop algorithms. We implemented the proposed scheme on a field-programmable gate array (FPGA) and compared its decoding speed with that of a conventional decoder. From the result of implementation, we confirm that the decoding speed of proposed adaptive decoding is faster than conventional scheme by 6.4 times.

Design and Architecture of Low-Latency High-Speed Turbo Decoders

  • Jung, Ji-Won;Lee, In-Ki;Choi, Duk-Gun;Jeong, Jin-Hee;Kim, Ki-Man;Choi, Eun-A;Oh, Deock-Gil
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.525-532
    • /
    • 2005
  • In this paper, we propose and present implementation results of a high-speed turbo decoding algorithm. The latency caused by (de)interleaving and iterative decoding in a conventional maximum a posteriori turbo decoder can be dramatically reduced with the proposed design. The source of the latency reduction is from the combination of the radix-4, center to top, parallel decoding, and early-stop algorithms. This reduced latency enables the use of the turbo decoder as a forward error correction scheme in real-time wireless communication services. The proposed scheme results in a slight degradation in bit error rate performance for large block sizes because the effective interleaver size in a radix-4 implementation is reduced to half, relative to the conventional method. To prove the latency reduction, we implemented the proposed scheme on a field-programmable gate array and compared its decoding speed with that of a conventional decoder. The results show an improvement of at least five fold for a single iteration of turbo decoding.

  • PDF

Design of a Low-Power Turbo Decoder Using Parallel SISO Decoders (병렬 SISO 복호기에 의한 저전력 터보 복호기의 설계)

  • Lee, Hee-Jin;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2C
    • /
    • pp.25-30
    • /
    • 2005
  • Turbo code is popularly used for the reliable communication in the presence of burst errors. Even if it shows good error performance near to the Shannon limits, it requires a large amount of memories and exhibits long latency. This paper proposes an architecture for the low power implementation of the Turbo decoder adopting the Max-Log-Map algorithm. In the proposed design, two SISO decoders are designed to operate in parallel, and a novel interleaver is designed to prevent the collision of memory accesses by two SISO decoders. Experimental results show that power consumption has been reduced by about 40% in the proposed decoder compared to previous Turbo decoders. The area overhead due to the additional interleaver controller is negligible.

A New Decoding Method of Turbo Code (터보코드의 복호화 기법)

  • Park Sung-Joon
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.4
    • /
    • pp.87-93
    • /
    • 2005
  • In this paper we propose a new iterative decoding method of turbo code which computes the log-likelihood ratios at each MAP (maximum a posteriori) decoder in parallel in each iteration step and combines them with proper weights to produce better decisions. Our results indicate that the proposed decoding method is particularly useful for systems with limited number of iterations and low code rates.

  • PDF

An FPGA Implementation of High-Speed Flexible 27-Mbps 8-StateTurbo Decoder

  • Choi, Duk-Gun;Kim, Min-Hyuk;Jeong, Jin-Hee;Jung, Ji-Won;Bae, Jong-Tae;Choi, Seok-Soon;Yun, Young
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.363-370
    • /
    • 2007
  • In this paper, we propose a flexible turbo decoding algorithm for a high order modulation scheme that uses a standard half-rate turbo decoder designed for binary quadrature phase-shift keying (B/QPSK) modulation. A transformation applied to the incoming I-channel and Q-channel symbols allows the use of an off-the-shelf B/QPSK turbo decoder without any modifications. Iterative codes such as turbo codes process the received symbols recursively to improve performance. As the number of iterations increases, the execution time and power consumption also increase. The proposed algorithm reduces the latency and power consumption by combination of the radix-4, dual-path processing, parallel decoding, and early-stop algorithms. We implement the proposed scheme on a field-programmable gate array and compare its decoding speed with that of a conventional decoder. The results show that the proposed flexible decoding algorithm is 6.4 times faster than the conventional scheme.

  • PDF

Design of Contention Free Parallel MAP Decode Module (메모리 경합이 없는 병렬 MAP 복호 모듈 설계)

  • Chung, Jae-Hun;Rim, Chong-Suck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.1
    • /
    • pp.39-49
    • /
    • 2011
  • Turbo code needs long decoding time because of iterative decoding. To communicate with high speed, we have to shorten decoding time and it is possible with parallel process. But memory contention can cause from parallel process, and it reduces performance of decoder. To avoid memory contention, QPP interleaver is proposed in 2006. In this paper, we propose MDF method which is fit to QPP interleaver, and has relatively short decoding time and reduced logic. And introduce the design of MAP decode module using MDF method. Designed decoder is targetted to FPGA of Xilinx, and its throughput is 80Mbps maximum.