• Title/Summary/Keyword: Parallel Transfer

Search Result 549, Processing Time 0.029 seconds

Load and Mutual Inductance Identification Method for Series-Parallel Compensated IPT Systems

  • Chen, Long;Su, Yu-Gang;Zhao, Yu-Ming;Tang, Chun-Sen;Dai, Xin
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1545-1552
    • /
    • 2017
  • Identifying the load and mutual inductance is essential for improving the power transfer capability and power transfer efficiency of Inductive Power Transfer (IPT) systems. In this paper, a steady-state load and mutual inductance identification method focusing on series-parallel compensated IPT systems is proposed. The identification model is established according to the steady-state characteristics of the system. Furthermore, two sets of identification results are obtained, and then they are analyzed in detail to eliminate the untrue one. In addition, the identification method can be achieved without extra circuits so that it does not increase the complexity of the system or the control difficulty. Finally, the feasibility of the proposed method has been verified by simulation and experimental results.

Flow and Heat Transfer Characteristics in a Slot Film Cooling with Various Flow Inlet Conditions (냉각유로방식 변화에 따른 슬롯 막냉각에서의 유동 및 열전달 특성)

  • Ham, Jin-Ki;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.870-879
    • /
    • 2000
  • An experimental investigation is conducted to improve a slot film cooling system which can be used for the cooling of gas turbine combustor liner. The tangential slots are constructed of discrete holes with different injection types which are the parallel, vertical, and combined to the slot lip. The investigation is focused on the coolant supply systems of normal-, parallel-, and counter-flow paths to the mainstream direction. A naphthalene sublimation technique has been employed to measure the local heat/mass transfer coefficients in a slot with various injection types and coolant feeding directions. The velocity distributions at the exit of slot lip for the parallel and vertical injection types are fairly uniform with mild periodical patterns with respect to the hole positions. However, the combined injection type increases the nonuniformity of flow distribution with the period equaling twice that of hole-to-hole pitch due to splitting and merging of the ejected flows. The secondary flow at the lip exit has uniform velocity distributions for the parallel and vertical injection types, which are similar to the results of a two-dimensional slot injection. In the results of local heat/mass transfer coefficient, the best cooling performance inside the slot is obtained with the vertical injection type among the three different injection types due to the effect of jet impingement. The lateral distributions of Sh with the parallel- and counter-flow paths are more uniform than the normal flow path. The averaged Sh with the injection holes are $2{\sim}5$ times higher than that of a smooth two-dimensional slot path.

A Power Regulation and Harmonic Current Elimination Approach for Parallel Multi-Inverter Supplying IPT Systems

  • Mai, Ruikun;Li, Yong;Lu, Liwen;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1245-1255
    • /
    • 2016
  • The single resonant inverter is widely employed in typical inductive power transfer (IPT) systems to generate a high-frequency current in the primary side. However, the power capacity of a single resonant inverter is limited by the constraints of power electronic devices and the relevant cost. Consequently, IPT systems fail to meet high-power application requirements, such as those in rail applications. Total harmonic distortion (THD) may also violate the standard electromagnetic interference requirements with phase shift control under light load conditions. A power regulation approach with selective harmonic elimination is proposed on the basis of a parallel multi-inverter to upgrade the power levels of IPT systems and suppress THD under light load conditions by changing the output voltage pulse width and phase shift angle among parallel multi-inverters. The validity of the proposed control approach is verified by using a 1,412.3 W prototype system, which achieves a maximum transfer efficiency of 90.602%. Output power levels can be dramatically improved with the same semiconductor capacity, and distortion can be effectively suppressed under various load conditions.

Parallel Operation Control Method of Grid-connected Inverters with Seamless Transfer for Energy Storage System in Microgrid (마이크로그리드에서 에너지 저장시스템을 위한 무순단 절체 기능을 갖는 계통연계형 인버터의 병렬운전 제어기법)

  • Park, Sung-Youl;Kim, Joo-Ha;Jung, Ah-Jin;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 2016
  • In the microgrid, inverters for energy storage system are generally constructed in a parallel structure because of capacity expandability, convenience of system maintenance, and reliability improvement. Parallel inverters are required to provide stable voltage to the critical load in PCC and to accurately share the current between each inverter. Furthermore, when islanding occurs, the inverters should change its operating mode from grid-connected mode to stand-alone mode. However, during clearing time and control mode change, the conventional control method has a negative impact on the critical load, that is, severe fluctuating voltage. In this study, a parallel operation control method is proposed. This method provides seamless mode transfer for the entire transition period, including clearing time and control mode change, and has accurate current sharing between each inverter. The proposed control method is validated through simulation and experiment.

Real-time Style Transfer for Video (실시간 비디오 스타일 전이 기법에 관한 연구)

  • Seo, Sang Hyun
    • Smart Media Journal
    • /
    • v.5 no.4
    • /
    • pp.63-68
    • /
    • 2016
  • Texture transfer is a method to transfer the texture of an input image into a target image, and is also used for transferring artistic style of the input image. This study presents a real-time texture transfer for generating artistic style video. In order to enhance performance, this paper proposes a parallel framework using T-shape kernel used in general texture transfer on GPU. To accelerate motion computation time which is necessarily required for maintaining temporal coherence, a multi-scaled motion field is proposed in parallel concept. Through these approach, an artistic texture transfer for video with a real-time performance is archived.

Implementation of high-speed parallel data transfer for MCG signal acquisition (심자도 신호 획득을 위한 고속 병렬 데이터 전송 구현)

  • Lee, Dong-Ha;Yoo, Jae-Tack
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.444-447
    • /
    • 2004
  • A heart diagnosis system adopts hundreds of Superconducting Quantum Interface Device(SQUID) sensors for precision MCG(Magnetocardiogram) or MEG(Magnetoencephalogram) signal acquisitions. This system requires correct and real-time data acquisition from the sensors in a required sampling interval, i.e., 1 mili-second. This paper presents our hardware design and test results, to acquire data from 256 channel analog signal with 1-ksample/sec speed, using 12-bit 8-channel ADC devices, SPI interfaces, parallel interfaces, and 8-bit microprocessors. We chose to implement parallel data transfer between microprocessors as an effective way of achieving such data collection. Our result concludes that the data collection can be done in 250 ${\mu}sec$ time-interval.

  • PDF

INFLUENCE OF HALL CURRENT AND HEAT SOURCE ON MHD FLOW OF A ROTATING FLUID IN A PARALLEL POROUS PLATE CHANNEL

  • VENKATESWARLU, M.;UPENDER REDDY, G.;VENKATA LAKSHMI, D.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.4
    • /
    • pp.217-239
    • /
    • 2018
  • This paper examined the MHD and thermal behavior of unsteady mixed convection flow of a rotating fluid in a porous parallel plate channel in the presence of Hall current and heat source. The exact solutions of the concentration, energy and momentum equations are obtained. The influence of each governing parameter on non dimensional velocity, temperature, concentration, skin friction coefficient, rate of heat transfer and rate of mass transfer at the porous parallel plate channel surfaces is discussed. During the course of numerical computation, it is observed that as Hall current parameter and Soret number at the porous channel surfaces increases, the primary and secondary velocity profiles are increases while the primary and secondary skin friction coefficients are increases at the cold wall and decreases at the heated wall. In particular, it is noticed that a reverse trend in case of heat source parameter.

Boiling heat transfer characteristics of FC-72 in parallel micro-channels (병렬 마이크로 채널에서 FC-72의 비등 열전달 특성)

  • Choi, Yong-Seok;Lim, Tae-Woo;You, Sam-Sang;Kim, Hwan-Seong;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1032-1038
    • /
    • 2014
  • In this study, an experimental study was performed to understand the boiling heat transfer characteristics of FC-72 in parallel micro-channels. The parallel micro-channels contained channels having a $0.2mm{\times}0.45mm$ [$H{\times}W$] cross section and length of 60 mm. And heat flux was varied from 16.4 to $25.6kW/m^2$ and mass fluxes from 300 to $500kg/m^2s$. The measured heat transfer coefficient was sharply decreased at lower vapor quality and then it was kept approximately constant as the vapor quality is increased. From the experimental results, the boiling heat transfer mechanism of FC-72 was confirmed and the measured heat transfer coefficient was compared and analyzed with the existing correlations to predict the heat transfer coefficient.

An Experimental Study on Evaporation/Condensation Heat Transfer with Flow Direction in Brazed Plate Heat Exchanger using Refrigerant 410A (R410A를 이용한 브레이징 타입 판형열교환기에서 물 측 유동방향에 따른 응축/증발 성능 평가)

  • Lee, Sung-Woo;Jeong, Young-Man;Lee, Jae-Keun;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1096-1101
    • /
    • 2009
  • The plate heat exchanger(PHE) in heat pump has two flow streams of the refrigerant and water. The flow direction of the refrigerant, unlike that of water, can be changed by a 4-way valve depending on operating condition. Therefore the flow arrangement is a parallel flow for heating and a counter flow for cooling, respectively. In this study, the effects of the flow direction of the water on the heat transfer rate are investigated experimentally. The experiments are carried out for brazed plate heat exchangers under a parallel and counter flow conditions in evaporation and condensation. The experimental parameters in this study include the mass flux of the refrigerant 410A from 3 to $14\;kg/m^2s$ and the flow patterns for the pressure of PHE fixed at 0.97 and 2.46 MPa. The results show that both the heat transfer rate and frictional pressure drop across the PHE increase with the mass flux. The heat transfer rate of the refrigerant 410A for evaporation show great sensitivity to flow direction of the water. The heat transfer rate for evaporation with a counter flow are 5-30% higher than that with a parallel flow.

  • PDF

Reduction of Electromagnetic Field from Wireless Power Transfer Using a Series-Parallel Resonance Circuit Topology

  • Kim, Jong-Hoon;Kim, Hong-Seok;Kim, In-Myoung;Kim, Young-Il;Ahn, Seung-Young;Kim, Ji-Seong;Kim, Joung-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.166-173
    • /
    • 2011
  • In this paper, we implemented and analyzed a wireless power transfer (WPT) system with a CSPR topology. CSPR refers to constant current source, series resonance circuit topology of a transmitting coil, parallel resonance circuit topology of a receiving coil, and pure resistive loading. The transmitting coil is coupled by a magnetic field to the receiving coil without wire. Although the electromotive force (emf) is small (about 4.5V), the voltage on load resistor is 148V, because a parallel resonance scheme was adopted for the receiving coil. The implemented WPT system is designed to be able to transfer up to 1 kW power and can operate a LED TV. Before the implementation, the EMF reduction mechanism based on the use of ferrite and a metal shield box was confirmed by an EM simulation and we found that the EMF can be suppressed dramatically by using this shield. The operating frequency of the implemented WPT system is 30.7kHz and the air gap between two coils is 150mm. The power transferred to the load resistor is 147W and the real power transfer efficiency is 66.4 %.