• Title/Summary/Keyword: Parallel Thyristor

Search Result 27, Processing Time 0.032 seconds

A Study on Three Parallel Operation Control Algorithm of Thyristor Dual Converter System for Urban Railway Substation (도시 철도용 사이리스터 듀얼 컨버터 시스템의 3병렬 운전 제어 기법에 관한 연구)

  • Kim, Sung-An;Han, Sung-Woo;Cho, Yun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.459-467
    • /
    • 2017
  • An urban railway power substation consists of three thyristor dual converters. Two converters are connected to up and down trolley line to supply the electric energy or feed the regenerative energy back to the distribution. When the two converters break down, the remaining converter is used in an emergency. One thyristor dual converter system (TDCS) manages the energy of two or three railway stations. If the TDCS fails, the trains stop operating. To solve the problem, this paper proposes the three parallel operation control algorithm of thyristor dual converter system using the emergency converter. The broken TDCS can be replaced by the emergency converter in other TDCS. The effectiveness of this proposed control is verified by simulation.

Parallel Control Algorithm of Thyristor Dual Converter Power System for DC Power Substation of Railway (철도 직류 급전용 싸이리스터 이중 컨버터 전력 시스템의 병렬운전 기법)

  • Kim, Young-Woo;Moon, Dong-Ok;Lee, Chang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • A parallel control algorithm of thyristor dual-converter power system for the DC power supply of railway is proposed. The circulating current and current imbalance generated during parallel operation can be limited to control the output voltage of each power system by using the proposed parallel control algorithm. The proposed control algorithm can also eliminate output current sensor to achieve the same output response without additional costs. The validity of the proposed algorithm is verified through simulation and experiment.

A Studies for Sequential Mode Change Control Algorithm of the Parallel Dual Converter of Using Thyristor for Supplying the Urban Railway DC Power (도시철도의 직류전력 공급을 위한 사이리스터를 사용한 병렬 듀얼 컨버터의 순차적 모드 전환 제어 알고리즘에 대한 연구)

  • Han, Sung-Woo;Kim, Sung-An;Cho, Yun-Hyun;Byun, Gi-Sig
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.511-519
    • /
    • 2016
  • This paper is proposed control algorithm for the using thyristor of the parallel dual converter for Urban railway power supply in order to return the regenerative power generated by regenerative braking in urban railway train. Conventional control algorithm of Thyristor dual converter for urban railway power supply has voltage variation within a control range of hysteresis band. The purposed control algorithm of the parallel thyristor dual converter is to maintain a constant voltage without voltage variation in accordance with variable load through the Sequential mode change. And the control algorithm need calculating optimum initial firing angle to consider magnitude of the load current slope. For this purpose, Proposed algorithm for sequential conversion mode of the dual converter was verified by applying for the simulation.

A Study on the Compensation Method for Unbalance Parallel Operation of Parallel Connected Thyristor Dual Converters using Circulating Current (순환 전류를 이용한 병렬 연결된 사이리스터 듀얼 컨버터의 불균형 병렬 운전 보상 기법에 관한 연구)

  • Kim, Sung-An;Han, Sung-Woo;Moon, Dong-Ok;Kim, Young-Woo;Lee, Chang-Hee;Cho, Yun-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.473-480
    • /
    • 2016
  • This study proposes a performance improvement for parallel-connected thyristor dual converters using a circulating current with an unbalanced parallel operation compensator. The proposed control method determines a variable reference value for the voltage PI controller according to voltage error at firing angle control applied to a difference current control. This method uses circulating current control to maintain a stable voltage and excellent current response during parallel operation. The effectiveness of the proposed control is verified with a simulation and an experiment based on the comparison of the performance of the proposed control method with other conventional methods.

Initial Firing Angle Control of Parallel Multi-Pulse Thyristor Dual Converter for Urban Railway Power Substations

  • Kim, Sung-An;Han, Sung-Wo;Cho, Yun-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.674-682
    • /
    • 2017
  • This paper presents an optimal initial firing angle control based on the energy consumption and regenerative energy of a parallel multi-pulse thyristor dual converter for urban railway power substations. To prevent short circuiting the thyristor dual converter, a hysteresis band for maintaining a zero-current discontinuous section (ZCDS) is essential during mode changes. During conversion from the ZCDS to forward or reverse mode, the DC trolley voltage can be stabilized by selecting the optimal initial firing angle without an overshoot and slow response. However, the optimal initial firing angle is different depending on the line impedance of each converter. Therefore, the control algorithm for tracking the optimal initial firing angle is proposed to eliminate the overshoot and slow response of DC trolley voltage. Simulations and experiments show that the proposed algorithm yields the fastest DC voltage control performance in the transient state by tracking the optimal firing angle.

Integrated Thyristor Switch Structures for Capacitor Discharge Application

  • Kim, Eun-Dong;Zhang, Chang-Li;Kim, Sang-Cheol;Baek, Do-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.22-25
    • /
    • 2001
  • A thyristor switch circuit for capacitor discharge application, of which the equivalent circuit includes a resistor between cathode and gate of a reverse-conducting thyristor and an avalanche diode anti-parallel between its anode and gate to set thyristor tum-on voltage, is monolithically integrated by planar process with AVE double-implantation method. To ensure a lower breakdown voltage of the avalanche diode for thyristor tum-on than the break-over voltage of the thyristor, $p^+$ wells on thyristor p base layer are made by boron implantation/drive-in for a steeper doping profile with higher concentrations while rest p layers of thyristor and free-wheeling diode parts are formed with Al implantation/drive-in for a doping profile of lower steepness. The free-wheeling diode part is isolated from the thyristor part by formation of separated p-well emitter for suppressing commutation between them, which is achieved during the formation of thyristor p-base layer.

  • PDF

Firing Angle Control of Thyristor Converter using PID Controller with Parallel Data Loop (데이터 병렬루프를 가지는 사이리스터 컨버터의 PID 점호각 제어)

  • Lee, Jae-Sung;Jang, Jin-Seok;Choo, Young-Bae;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.278-284
    • /
    • 2009
  • This paper presents a firing angle controller of a thyristor converter for DC power supply using PID controller with parallel data loop to improve the dynamic response. The proposed parallel data loop for firing angle controller of 3-phase semi-converter, generates pre-measured firing angle according to reference voltage and load current. With the approximated firing angle according to operating conditions, the output voltage can fast keep the reference value with small voltage error. And the PID controller compensates the output voltage error from the firing angle of parallel data loop. In order to reduce the sudden changing of the data from current ripple, a simple digital low pass filter is used to determine the output data. The proposed control scheme is verified by the experimental test of a practical 50[A] grade thyristor converter system.

Harmonic Reduction of Parallel-Connected Thyristor Rectifiers with an Active Interphase Reactor

  • Choi, Sewan;Oh, Junyong;Kim, Kiyong
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.276-280
    • /
    • 1998
  • This paper proposes a harmonic a harmonic reduction technique of the parallel-connected twelve-pulse thyristor rectifiers. The proposed system is an improvement over the diode rectifier system with an active interphase reactor [2]. In this scheme, a low KVA (0.15 Po (PU) ) active current source injects a triangular current into an interphase reactor of a twelve-pulse thyristor rectifier along the phase delay angle. The current injection results in near sinusoidal input current with less than 1% THD. Detailed analysis of the proposed scheme along scheme along with design equations is illustrated. Simulation results verify the concept.

  • PDF

Current Sharing for the Multi-parallel Configuration of High Power Thyristors (대전력 Thyristor 다병렬 구조의 전류배분)

  • Choi, J.;Oh, J.S.;Suh, J.H.;An, J.S.;Kwon, O.
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.369-370
    • /
    • 2010
  • 토카막(Tokamak)형 핵융합실험장치의 초전도전자석 전원공급장치는 수 kV, 수십 kA의 대전력 직류전원를 얻기 위한 ac-dc 컨버터가 필요하다. 이와 같은 고전압, 대전류 사양을 얻기 위하여 일반적으로 thyristor ac-dc 컨버터를 사용하며, 필요한 전류사양을 충족하기 위하여 다수의 대전류용 thyristor 소자를 병렬로 연결하여 각 암(arm)의 스위치를 구성한다. 이와 같이 다수의 반도체 스위치 소자를 병렬로 연결하여 사용하는 경우에는 각 단위 소자별 전압강하, 직렬회로 임피던스 및 전류 경로 차이 등의 이유로 균등한 전류 배분을 얻기가 쉽지 않다. 본 논문에서는 각 암(arm)마다 8개씩의 대전류 thyristor 를 병렬로 연결 구성하여 제작한 시작품 단상 컨버터에 대한 전류배분 실험을 실시하고 그 결과를 분석 및 정리한다.

  • PDF

ESTIMATION OF REQUIRED CAPACITY OF SHUNT TYPE ACTIVE POWER FILTER WITH A THYRISTOR CONVERTER LOAD

  • Jeong, Seung-Gi;Kim, Dong-Ha
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.802-807
    • /
    • 1998
  • The main drawback of parallel type active power filters (APF) is the large capacity required for harmonic compensation. This paper evaluates the APF capacity requirement of harmonic/reactive power compensation for thyristor converter load. Theoretically achievable maximum power factor under partial load is evaluated. And it is shown that the APF capacity can be considerably reduced while slightly sacrificing the filtering performance by deliberately limiting the peak current of the APF.

  • PDF