• 제목/요약/키워드: Parallel Tabu Search

검색결과 27건 처리시간 0.027초

다 단계 혼합흐름공정 일정계획에서 납기지연 작업 수의 최소화를 위한 대체 목적함수 기반 탐색기법 (Surrogate Objective based Search Heuristics to Minimize the Number of Tardy Jobs for Multi-Stage Hybrid Flow Shop Scheduling)

  • 최현선;김형원;이동호
    • 대한산업공학회지
    • /
    • 제35권4호
    • /
    • pp.257-265
    • /
    • 2009
  • This paper considers the hybrid flow shop scheduling problem for the objective of minimizing the number of tardy jobs. In hybrid flow shops, each job is processed through multiple production stages in series, each of which has multiple identical parallel machines. The problem is to determine the allocation of jobs to the parallel machines at each stage as well as the sequence of the jobs assigned to each machine. Due to the complexity of the problem, we suggest search heuristics, tabu search and simulated annealing algorithms with a new method to generate neighborhood solutions. In particular, to evaluate and select neighborhood solutions, three surrogate objectives are additionally suggested because not much difference in the number of tardy jobs can be found among the neighborhoods. To test the performances of the surrogate objective based search heuristics, computational experiments were performed on a number of test instances and the results show that the surrogate objective based search heuristics were better than the original ones. Also, they gave the optimal solutions for most small-size test instances.

패밀리 셋업이 존재하는 병렬기계 일정계획 수립 (Scheduling for Parallel Machines with Family Setup Times)

  • 권익현;신현준;엄동환;김성식
    • 한국경영과학회지
    • /
    • 제30권1호
    • /
    • pp.27-41
    • /
    • 2005
  • This paper considers identical parallel machine scheduling problem. Each job has a processing time. due date. weight and family type. If a different type of job is followed by prior job. a family setup is incurred. A two phased heuristic is presented for minimizing the sum of weighted tardiness. In the first phase. using roiling horizon technique. group each job into same family and schedule each family. In the second phase. assign each job to machines using schedule obtained in the first phase. Extensive computational experiments and comparisons among other algorithms are carried out to show the efficiency of the proposed algorithm.

작업의 특성에 종속되는 병렬기계의 일정계획을 위한 발견적 기법 (A Heuristic for parallel Machine Scheduling Depending on Job Characteristics)

  • 이동현;이경근;김재균;박창권;장길상
    • 경영과학
    • /
    • 제17권1호
    • /
    • pp.41-54
    • /
    • 2000
  • in the real world situations that some jobs need be processed only on certain limited machines frequently occur due to the capacity restrictions of machines such as tools fixtures or material handling equipment. In this paper we consider n-job non-preemptive and m parallel machines scheduling problem having two machines group. The objective function is to minimize the sum of earliness and tardiness with different release times and due dates. The problem is formulated as a mixed integer programming problem. The problem is proved to be Np-complete. Thus a heuristic is developed to solve this problem. To illustrate its suitability and efficiency a proposed heuristic is compared with a genetic algorithm and tabu search for a large number of randomly generated test problems in ship engine assembly shop. Through the experimental results it is showed that the proposed algorithm yields good solutions efficiently.

  • PDF

하이브리드 병렬 유전자 알고리즘을 이용한 최적 신뢰도-중복 할당 문제 (An Optimal Reliability-Redundancy Allocation Problem by using Hybrid Parallel Genetic Algorithm)

  • 김기태;전건욱
    • 산업공학
    • /
    • 제23권2호
    • /
    • pp.147-155
    • /
    • 2010
  • Reliability allocation is defined as a problem of determination of the reliability for subsystems and components to achieve target system reliability. The determination of both optimal component reliability and the number of component redundancy allowing mixed components to maximize the system reliability under resource constraints is called reliability-redundancy allocation problem(RAP). The main objective of this study is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for reliability-redundancy allocation problem that decides both optimal component reliability and the number of component redundancy to maximize the system reliability under cost and weight constraints. The global optimal solutions of each example are obtained by using CPLEX 11.1. The component structure, reliability, cost, and weight were computed by using HPGA and compared the results of existing metaheuristic such as Genetic Algoritm(GA), Tabu Search(TS), Ant Colony Optimization(ACO), Immune Algorithm(IA) and also evaluated performance of HPGA. The result of suggested algorithm gives the same or better solutions when compared with existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improve solution through swap, 2-opt, and interchange processes. In order to calculate the improvement of reliability for existing studies and suggested algorithm, a maximum possible improvement(MPI) was applied in this study.

반복 공정을 가지는 제약적 병렬기계에서의 일정 계획 수립 (A Scheduling Scheme for Restricted Parallel Machines with Cycling Process)

  • 고효헌;백종관;강용하;김성식
    • 대한산업공학회지
    • /
    • 제30권2호
    • /
    • pp.107-119
    • /
    • 2004
  • A study on the following parallel machine problem is addressed in this research. An order is completed only when a given number of processes (cycle) are repeated. Anew cycle is possible only upon the completion of the previous cycle. Orders are classified into job group according to product feature. For a machine to switch to a different job group from the currently processing one a major setup is required while a minor setup time is inserted in between two jobs of the same job group. The objective of the study is to find a schedule that minimizes total weighted tardiness. An initial solution is obtained by the RATCS(Restricted Apparent Tardiness Cost with Setup) rule, and a Tabu search is applied to improve the solution. Numerical examples are also presented.

직렬시스템의 신뢰도 최적 설계를 위한 Hybrid 병렬 유전자 알고리즘 해법 (A Hybrid Parallel Genetic Algorithm for Reliability Optimal Design of a Series System)

  • 김기태;전건욱
    • 산업경영시스템학회지
    • /
    • 제33권2호
    • /
    • pp.48-55
    • /
    • 2010
  • Reliability has been considered as a one of the major design measures in various industrial and military systems. The main objective is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for the problem that determines the optimal component reliability to maximize the system reliability under cost constraint in this study. Reliability optimization problem has been known as a NP-hard problem and normally formulated as a mixed binary integer programming model. Component structure, reliability, and cost were computed by using HPGA and compared with the results of existing meta-heuristic such as Ant Colony Optimization(ACO), Simulated Annealing(SA), Tabu Search(TS) and Reoptimization Procedure. The global optimal solutions of each problem are obtained by using CPLEX 11.1. The results of suggested algorithm give the same or better solutions than existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improving solution through swap and 2-opt processes.

작업의 특성에 종속되는 병렬기계의 일정계획을 위한 발견적 기법 (A Heuristic for parallel Machine Scheduling Depending on Job Characteristics)

  • 이동현;이경근;김재균;박창권;장길상
    • 한국경영과학회지
    • /
    • 제17권1호
    • /
    • pp.41-41
    • /
    • 1992
  • In the real world situations that some jobs need be processed only on certain limited machines frequently occur due to the capacity restrictions of machines such as tools fixtures or material handling equipment. In this paper we consider n-job non-preemptive and m parallel machines scheduling problem having two machines group. The objective function is to minimize the sum of earliness and tardiness with different release times and due dates. The problem is formulated as a mixed integer programming problem. The problem is proved to be Np-complete. Thus a heuristic is developed to solve this problem. To illustrate its suitability and efficiency a proposed heuristic is compared with a genetic algorithm and tabu search for a large number of randomly generated test problems in ship engine assembly shop. Through the experimental results it is showed that the proposed algorithm yields good solutions efficiently.