• 제목/요약/키워드: Parallel Robot

검색결과 267건 처리시간 0.029초

2축 병렬로봇의 작동강성 최적설계 (Optimization of the Operating Stiffness of a Two-Axis Parallel Robot)

  • 이재욱;장진석;이상곤;정명식;조용재;김건우;유완석
    • 대한기계학회논문집A
    • /
    • 제39권6호
    • /
    • pp.561-566
    • /
    • 2015
  • 본 논문에서는 고 중량물을 빠르게 이송시키며'Pick & Place'작업을 수행하는 병렬로봇의 작동강성 최적설계에 대한 연구를 수행하였다. 20~30kg 의 고 중량물을 사용하여 특정 작업을 빠르게 수행하기 위해서는 빠른 응답속도를 위한 관성 기구부 경량 설계와 동시에 동작의 정밀도를 위한 고 강성설계가 필요하다. 하지만 요구조건인 관성 기구부 경량 설계와 고강성 설계는 상호 배타적인 관계이므로 본 연구에서는 다물체동역학 해석을 통해서 병렬로봇의 동적 거동을 분석함으로써 로봇의 작동 중에 작용하는 하중상태를 분석하였고, 상호 배타적인 두 성능을 동시에 만족시키기 위해 관성 기구부 위상 최적 설계를 수행하였다. 그리고 위상 최적설계 결과를 병렬로봇에 적용하여 그 신뢰성을 검증하였다.

미지물체를 안전하게 잡기 위한 6축 로봇손가락 힘/모멘트센서의 개발 (Development of a 6-axis Robot's Finger Force/Moment Sensor for Stably Grasping an Unknown Object)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.105-113
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for stably grasping an unknown object. In order to safely grasp an unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. and the result shows that interference errors of the developed sensor are less than 3%. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it. The fabricated gripper could grasp an unknown object stably. Thus, the developed 6-axis robot's finger force/moment sensor may be used for robot's gripper.

로봇 운동 제어의 실시간 연산을 위한 병렬처리구조 (A proposed parallel processing structure for robot motion control)

  • 고경철;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.1-5
    • /
    • 1988
  • The realization of high quality robot control needs the improvement of computing speed of controller. In this paper, parallel processing method is considered for this purpose. A S/W algorithm for task scheduling is developed first, and then, an appropriate H/W structure is proposed. This scheme is applied to calculate inverse kinematics of PUMA robot. The simulation results show that the computing time when using three 8086/87's is reduced to 4.23 msec compared to 10 msec in case using one 8086/87.

  • PDF

Fuzzy-PID controller for motion control of CFETR multi-functional maintenance platform

  • Li, Dongyi;Lu, Kun;Cheng, Yong;Zhao, Wenlong;Yang, Songzhu;Zhang, Yu;Li, Junwei;Wu, Huapeng
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2251-2260
    • /
    • 2021
  • The motion control of the divertor maintenance system of the China Fusion Engineering Test Reactor (CFETR) was studied in this paper, in which CFETR Multi-Functional Maintenance Platform (MFMP) was simplified as a parallel robot for the convenience of theoretical analysis. In order to design the motion controller of parallel robot, the kinematics analysis of parallel robot was carried out. After that, the dynamic modeling of the hydraulic system was built. As the large variation of heavy payload on MFMP and highly nonlinearity of the system, A Fuzzy-PID controller was built for self-tuning PID controller parameters by using Fuzzy system to achieve better performance. In order to test the feasibility of the Fuzzy-PID controller, the simulation model of the system was built in Simulink. The results have showed that Fuzzy-PID controller can significantly reduce the angular error of the moving platform and provide the stable motion for transferring the divertor.

제어기강성이 로봇관절의 진동에 미치는 영향 (The Effects of Controller Stiffness on the Vibration of Robot Joints)

  • 경현태;김재원;김문상
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.260-270
    • /
    • 1994
  • With the prevalent use of robot, the interests in moving speed of robot have been increasing for the purpose of upgrading performance of production. But the faster robot manipulator moves, the worse working accuracies are. And mechanical vibration is more and more serious with the increment of the moving speed of robot. So, the study on the cause and control method of robot vibration is one of the points of issue in robotics. This paper focuses on the vibration of 3 DOF parallel link drive mechanism robot. We assume that links of robot manipulator are `rigid' and joints are `flexible elements'. Governing equations of robot system including controller, servo amplifier, D.C servo motor, transmission with elasticity, and manipulator dynamics are derived. On the basis of modelling, we define `controller stiffness' by the proportional gain of controller and `stiffness of transmission'. Numerical and experimental research is performed to study vibration phenomena of robot induced from the variation of these two defined stiffnesses, and its results are shown.

미지물체를 잡기 위한 로봇 손가락의 3축 힘감지센서 설계 및 제작 (Design and fabrication of robot′s finger 3-axis force sensor for grasping an unknown object)

  • 김갑순
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.229-232
    • /
    • 2002
  • This paper describes the development of robot's finger 3-axis force sensor that detects the Fx, Fy, and Fz simultaneously fur stably grasping an unknown object. In order to safely grasp an unknown object using the robot's fingers, they should detect the force of gripping direction and the force of gravity direction, and perform the force control using the detected farces. The 3-axis force sensor that detects the Fx, Fy, and Fz simultaneously should be used for accurately detecting the weight of an unknown object of gravity direction. Thus, in this paper, robot's finger for stably grasping an unknown object is developed. And, the 3-axis farce sensor that detects the Fx, Fy, and Fz simultaneously fur constructing a robot's finger is newly modeled using several parallel-plate beams, and is fabricated. Also, it is calibrated, and evaluated.

  • PDF

수중항만공사 기계화 시공을 위한 로봇 개발 (Development of Robot for the Mechanized Construction of Underwater Harbor)

  • 박근우;김태성;정진욱;김용희;이민기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1781-1786
    • /
    • 2003
  • This research develops a robot as the device which constructs underwater harbour. This construction is to build a breakwater, which is dangerous and difficult. The hydraulic parallel mechanism-typed robot is developed to mechanize the construction by operating of a stoneworker (or diver) through a joystick. The six-dof robot is able to carry 2-3 tons' heavy stone and put it on the surface of breakwater. This paper presents the mechanical design of a miniature robot, its control and application for the breakwater construction.

  • PDF

Design of a Robot's Hand with Two 3-Axis Force Sensor for Grasping an Unknown Object

  • Kim, Gab-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권3호
    • /
    • pp.12-19
    • /
    • 2003
  • This paper describes the design of a robot's hand with two fingers for stably grasping an unknown object, and the development of a 3-axis force sensor for which is necessary to constructing the robot's fingers. In order to safely grasp an unknown object using the robot's fingers, they should measure the forces in the gripping and in the gravity directions, and control the measured forces. The 3-axis force sensor should be used for accurately measuring the weight of an unknown object in the gravity direction. Thus, in this paper, the robot's hand with two fingers for stably grasping an unknown object is designed, and the 3-axis force sensor is newly modeled and fabricated using several parallel-plate beams.

여유 구동 병렬기구를 이용한 마스크-패널 얼라인 로붓 시스템 (Mask-Panel Alignment Robot System Using a Parallel Mechanism with Actuation Redundancy)

  • 정해민;권상주;이상무
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.887-893
    • /
    • 2009
  • In this paper, a mask-panel alignment robot system is considered for IT industry applications. Two kinds of solutions are suggested which are required in constructing a control system for the alignment robot with actuation redundancy. First, the kinematic solution for the 4PPR parallel positioning mechanism is formulated for an arbitrary initial posture, which relates the mask-panel misalignment in the task space and the desired actuator displacements in the joint space. Secondly, in order to increase the stiffness of the control motion and also to avoid the mechanical lock which may happen due to the redundant actuation, a new synchronous control method is proposed which has the merit of coordinating joint control motions while not losing individual joint control performance. In addition, the engineering process to develop a visual alignment robot system is described with the results of experimental setup and GUI software. Finally, the experimental results demonstrate the effectiveness of the proposed alignment system control methodology and how much beneficial it will be in real industrial applications.

직·병렬 하이브리드 충전 구조를 사용한 배터리 균형 충전 (Battery Cell Balancing with Hybrid Architecture of Serial and Parallel Charging)

  • 정의한;양창주;한승호;김형석
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권4호
    • /
    • pp.609-613
    • /
    • 2016
  • 전기자동차 배터리 셀들 간의 불균형 충전 문제를 해결하기 위해, 직병렬 하이브리드 충전 구조를 개발하였다. 이 방법은 직렬 부분에 의해 주 충전이 수행되며 병렬 부분에 의해 밸런싱이 수행되는데, 이 때, 직렬 부분은 부피가 크고 무겁지만 병렬 부분은 직렬 부분보다 작고 가볍다. 개별 배터리 셀 전압을 측정하기 위한 센서 어레이, 듀티비 제어를 포함한 IGBT, 그리고 배터리 관리 시스템은 제안된 시스템의 핵심 요소이다.