• 제목/요약/키워드: Parallel Plasma Source

검색결과 19건 처리시간 0.029초

An Experimental Study on Multiple ICP & Helicon Source for Oxidation in Semiconductor Process

  • Lee, Jin-Won;Na, Byoung-Keun;An, Sang-Hyuk;Chang, Hong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.271-271
    • /
    • 2012
  • Many studies have been investigated on high density plasma source (Electron Cyclotron Resonance, Inductively Coupled Plasma, Helicon plasma) for large area source after It is announced that productivity of plasma process depends on plasma density. In this presentation, we will propose the new concept of the multiple source, which consists of a parallel connection of ICP sources and helicon plasma sources. For plasma uniformity, equivalent power (especially, equivalent current in ICP & Helicon) should distribute on each source. We design power feeding line as coaxial transmission line with same length of ground line in each source for equivalent power distribution. And we confirm the equivalent power distribution with simulation and experimental result. Based on basic study, we develop the plasma source for oxidation in semiconductor process. we will discuss the relationship between the processing parameters (With or WithOut magnet, operating pressure, input power ). In ICP, plasma density uniformity is uniform. In ICP with magnet (or Helicon) plasma density is not uniform. As a result, new design (magnet arrangement and gas distributor and etc..) are needed for uniform plasma density in ICP with magnet and Helicon.

  • PDF

병렬 플라즈마 소스를 이용한 마이크로 LED 소자 제작용 GaN 식각 공정 시스템 개발 (GaN Etch Process System using Parallel Plasma Source for Micro LED Chip Fabrication)

  • 손보성;공대영;이영웅;김희진;박시현
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.32-38
    • /
    • 2021
  • We developed an inductively coupled plasma (ICP) etcher for GaN etching using a parallel plasma electrode source with a multifunctional chuck matched to it in order for the low power consumption and low process cost in comparison with the conventional ICP system with a helical-type plasma electrode source. The optimization process condition using it for the micro light-emitting diode (µ-LED) chip fabrication was established, which is an ICP RF power of 300 W, a chuck power of 200 W, a BCl3/Cl2 gas ratio of 3:2. Under this condition, the mesa structure with the etch depth over 1 ㎛ and the etch angle over 75° and also with no etching residue was obtained for the µ-LED chip. The developed ICP showed the improved values on the process pressure, the etch selectivity, the etch depth uniformity, the etch angle profile and the substrate temperature uniformity in comparison with the commercial ICP. The µ-LED chip fabricated using the developed ICP showed the similar or improved characteristics in the L-I-V measurements compared with the one fabricated using the conventional ICP method

고전압 용량성 결합 플라즈마 시스템의 개선된 전압 파형 출력을 위한 펄스 전류 발생장치 회로 (Current Source Type Pulse Generator with Improved Output Voltage Waveform for High Voltage Capacitively Coupled Plasma System)

  • 채범석;민주화;서용석;김현배
    • 전력전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.153-160
    • /
    • 2019
  • This study proposes a current source-type pulse generator to improve output voltage and current waveforms under a capacitively coupled plasma (CCP) system. The proposed circuit comprises two parallel-connected current source-type converters. These converters can satisfy the required output waveforms of plasma processing. The parallel-connected converters operate without reverse current fault by applying a time-delay control technique. Conventional voltage source converters based on pulse power supply exhibit drawbacks in short-circuit current, and problems occur when they are applied to a CCP system. The proposed pulse power supply based on a current source converter fundamentally solves the short-circuit current problem. Therefore, this topology can improve the voltage and current accuracy of a CCP system.

Understanding of Non-Thermal Atmospheric Pressure Plasma Characteristics Produced in Parallel Plate Type Geometry

  • Choe, Wonho;Moon, Se Youn;Kim, Dan Bee;Jung, Heesoo;Rhee, Jun Kyu;Gweon, Bomi
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.144-144
    • /
    • 2013
  • Non-thermal atmospheric pressure plasmas have recently garnered much attention due to their unique physical and chemical properties that are sometimes significantly different from those of low pressure plasmas. It can offer many possible application areas including nano and bio/medical areas. Many different types of plasma sources have been developed for specific needs, which can be one of the important merits of the atmospheric pressure plasmas since characteristics of the produced plasma depend significantly on operating parameters such as driving frequency, supply gas type, driving voltage waveform, gas flow rate, gas composition, geometrical factor etc. Among many source configurations, parallel plate type geometry is one of the simplest configurations so that it can offer many insights for understanding basic underlying physics. Traditionally, the parallel plate type set up has been studied actively for understanding low pressure plasma physics along with extensive employment in industries for the same reason. By considering that understanding basic physics, in conjunction with plasma-surface interactions especially for nano & bio materials, should be pursued in parallel with applications, we investigated atmospheric pressure discharge characteristics in a parallel plate type capacitive discharge source with two parallel copper electrodes of 60 mm in diameter and several millimeters in gap distance. In this presentation, some plasma characteristics by varying many operating variables such as inter-electrode distance, gas pressure, gas composition, driving frequency etc will be discussed. The results may be utilized for plasma control for widening application flexibility.

  • PDF

Large Area Plasma Characteristics using Internal Linear ICP (Inductively Coupled Plasma) Source for the FPD processing

  • Kim, Kyong-Nam;Lim, Jong-Hyeuk;Yeom, Geun-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.544-547
    • /
    • 2006
  • In this study, the characteristics of large area internal linear ICP sources of $1,020mm{\times}920mm$ (substrate area is $880mm{\times}660mm$) were investigated using a multiple linear antennas with U-type parallel connection. Using the multiple linear antennas with U-type parallel connection, a high plasma density of $2{\times}10^{11}/cm^3$ and a high power transfer efficiency of about 88% could be obtained at 5kW of RF power and with 20mTorr Ar. A low plasma potential of less than 26V and a low electron temperature of $2.6{\sim}3.2eV$ could be also obtained. The measured plasma uniformity on the substrate size of 4th generation $(880mm{\times}660mm)$ was about 4%, therefore, it is believed that the multiple linear antennas with U-type parallel connection can be successfully applicable to the large area flat panel display processing.

  • PDF

Research on parallelization mechanism of inductively coupled plasma for large area plasma source

  • 이장재;김시준;김광기;이바다;이영석;염희중;김대웅;유신재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.183-183
    • /
    • 2016
  • Inductively coupled plasma having the high-density is often used for high productivity in the plasma processing. In large area processing, the plasma can be generated by using the multi-pole connected in parallel. However, in case of this, the power cannot transfer to plasma uniformly. To address the problem, we studied the mechanism of inductively coupled plasma connected in parallel by using transformer model. We also studied about the change of the plasma parameters over the time through the power balance equation and particle balance equation.

  • PDF

Application of Conformal Mapping in Analysis the Parallel Stripline Resonator

  • Tran, T.H.;You, S.J.;Kim, J.H.;Seong, D.J.;Jeong, J.R.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.180-180
    • /
    • 2012
  • A microplasma system source based on microwave parallel stripline resonator (MPSR) was developed for the generation of microplasmas in a wide range of pressure from some torr to 760 torr. This source was operated at its resonance frequency that much depends upon not only its discharge gap size but also operated pressure. This paper applied a simple circuit model to analyze the effects of discharge gap size and pressure to resonance frequency and impedance of MPSR in the cases with and without plasma exist inside the discharge gap. In the process of calculating, the conformal mapping method was used to estimate the capacitance of the MPSR. The calculating results by using circuit model agree well with the simulation results that using commercial CST microwave studio software.

  • PDF

대면적 플라즈마 소스에서의 ITO 식각균일도 향상 (Improvement of ITO etching uniformity in a large area plasma source)

  • 김진우;조수범;김봉주;박세근;오범환;이종근
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.145-148
    • /
    • 2001
  • A large area plasma source using parallel $2{\times}2$ ICP antennas showed improved etching uniformity by the E-ICP operation. ITO etching process with $CH_4$ gas chemistry is optimized with the DOE (Design of Experiment) based on Taguchi method. Various methane ratios in methane and argon mixture are compared to confirm the effect of polymerization. The analysis shows that the effect of bias power is the largeset. We obtained higher ITO etching rate and better uniformity on $350{\times}300mm$ substrate at the 50Hz magnetization frequency of the E-ICP operation technique,

  • PDF

대면적 플라즈마 소스에서의 ITO 식각균일도 향상 (Improvement of 170 etching uniformity in a large area plasma source)

  • 김진우;조수범;김봉주;박세근;오범환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.145-148
    • /
    • 2001
  • A large area plasma source using parallel 2x2 ICP antennas showed improved etching uniformity by the E-ICP operation. ITO etching process with CH$_4$ gas chemistry is optimized with the DOE(Design of Experiment) based on Taguchi method. Various methane ratios in methane and argon mixture are compared to confirm the effect of polymerization. The analysis shows that the effect of bias power is the largeset. We obtained higher ITO etching rate and better uniformity on 350x300mm substrate at the 50Hz magnetization frequency of the E-ICP operation technique.

  • PDF

전기적 특성을 고려한 ICP Source 설계 (Design of an Inductively Coupled Plasma Source with Consideration of Electrical Properties and its Practical Issues)

  • 이상원
    • 한국진공학회지
    • /
    • 제18권3호
    • /
    • pp.176-185
    • /
    • 2009
  • ICP source의 성능과 구현 가능성은 impedance와 전기장, 자기장의 공간 분포에 큰 영향을 받는다. ICP source의 impedance는 ICP 안테나와 플라즈마의 impedance에 의해 결정된다. 안테나 설계에 있어서 안테나에 형성되는 고전압을 방지하고 공정 중 급격한 impedance 변화를 방지하기 위해서는 ICP source의 허수 impedance가 $-100\;ohm{\sim}+100\;ohm$의 영역에 존재하는 것이 유리하다. 플라즈마 균일도는 안테나에 흐르는 전류와 전압에 의해 형성되는 전기장 세기와 자기장 세기에 영향을 받는다. 원형 안테나와 대칭성이 개선된 안테나에 대해 전자기 simulation과 플라즈마 밀도의 공간분포를 측정하였으며 안테나 형태에 따른 전자기장과 플라즈마 밀도 분포의 개선을 확인하였다. 반경 방향 균일도를 조절하기 위해서는 일반적으로 지름이 다른 복수개의 안테나를 동심원 상에 배치하는 방법을 사용한다. 각 안테나들을 병렬로 연결한 경우 각각의 안테나의 임피던스에 따른 전류 분배 비율이 상이하며, 분배 비율을 조절하기 위해 코일 또는 capacitor를 연결할 경우 나타나는 현상을 계산하였다.