• Title/Summary/Keyword: Parallel Mechanism Machine Tool

Search Result 17, Processing Time 0.024 seconds

The Eclipse-II Parallel Mechanism for Motion Simulators

  • Kim, Jongwon;Hwang, Jae-Chul;Kim, Jin-Sung;Park, Frank C.;Cho, Young-Man
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.286-291
    • /
    • 2002
  • We present the analysis and design of a new six degree-of-freedom parallel mechanism, Eclipse-II, which can be used as a basis for general motion simulators. This mechanism allows x, y and z-axis translations and a, b and c-axis rotations. Most significantly, it presents the advantage of enabling continuous 360 degrees spinning of the platform. We first describe the computational procedures for the forward and in inverse kinematics of the Eclipse-II. Next, the complete singularity analysis is presented for the two cases of end-effector and actuator singularities. Two additional actuators are added to the original mechanism to eliminate both types of singularities with in the workspace. Some practical aspects of the prototype development are introduced.

  • PDF

Trends of Technology Development of Friction Stir Welding Machine (마찰교반접합장비의 기술개발 동향)

  • Kim, Young-Pyo;Kim, Cheol-Hee;Kim, Young-Gon;Joo, Sung-Min
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.1-5
    • /
    • 2016
  • At present, FSW(friction stir welding) process is being considered as an actual way for production of various industrial products. However FSW process involves high temperature and load on the tool during welding. These are make a difference between FSW machine and general machine tools. From this reason, development of FSW machine needs very careful consideration on stiffness of machine structure, spindle and moving axis including machine control system. In this study authors investigate on the trends of technology development of FSW machine in order to share the information for more extension of FSW technology with related researchers and engineers.

Chatter Analysis of a Parallel Mechanism-based Universal Machining Center

  • Lee, Sin-Young;Kim, Jong-Won;Lee, Jang-Moo;Kim, Gyoo-Beom
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.691-697
    • /
    • 2003
  • Extensive researches have been carried out on machine tool chatter to obtain assessment procedure and improvement measures. In this study, chatter limit is predicted on a newly fabricated universal machining center by the combination of structural dynamic characteristics and cutting mechanics. We showed the unstable cutting conditions, and from them we could plot the unstable borderlines. From the chatter simulations we could say that the newly built universal machining center can be well used in the finishing machining of steel as other common machine tools.

Control Gain Tuning of a Simultaneous Multi-Axis PID Control System by Taguchi Method (다구찌방법을 이용한 다축 동시 PID 제어시스템의 제어이득 조정)

  • Lee, Ki-Ha;Kim, Jong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.25-35
    • /
    • 1999
  • This paper presents a control gain tuning scheme for multi-axis PID control systems by Taguchi method. As an experimental set-up, a parallel mechanism machine tool has been selected. This machine has eight servodrives and each servodrive has four control gains, respectively. Therefore, total 32 control gains have to be tuned. Through a series of design of experiments, an optimal and robust set of PID control gains is tuned. The index of the sum of position error and velocity error is reduced to 61.4% after the experimental gain tuning regardless of the feedrate variation.

  • PDF

The Optimum Design of a Spatial 3-DOF Manipulator Using Axiomatic Design (공리적 설계를 이용한 공간형 3자유도 기구의 최적설계)

  • Han Seog Young;Yi Byung-Ju;Kim Seon Jung;Kim Jong O;Chung Goo Bong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.52-60
    • /
    • 2005
  • Ultra-precision positioning systems basically require high natural frequency and sufficient workspace. To cope with this requirement, flexure hinge mechanisms have been developed. However, previous designs are difficult to satisfy the functional requirements of the system due to difficulty in modeling and optimization process applying fur the independent axiomatic design. Therefore, this paper suggests a new design and design procedure based on semi-coupled, axiomatic design. A spatial 3-DOF parallel type micro mechanism is chosen aa an exemplary device. Based on preliminary kinematic analysis and dynamic modeling of the system, an optimum design is conducted. To check the effectiveness of the optimal parameters obtained by theoretical approach, simulation has been performed by FEM.

3-DOF Parallel Micromanipulator : Design Consideration (3차원 평형 마이크로조정장치 : 설계 고려사항)

  • Lee, Jeong-Ick;Lee, Dong-Chan;Han, Chang-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.13-22
    • /
    • 2008
  • For the accuracy correction of the micro-positioning industrial robot, micro-manipulator has been devised. The compliant mechanisms using piezoelectric actuators is necessary geometrically and structurally to be developed by the optimization approaches. The overall geometric advantage as the mechanical efficiencies of the mechanism are considered as objective functions, which respectively art the ratio of output displacement to input force, and their constraints are the vertical notion of supporting leg and the structural strength of manipulation. In optimizing the compliant mechanical amplifier, the sequential linear programming and an optimality criteria method are used for the geometrical dimensions of compliant bridges and flexure hinges. This paper presents the integrated design process which not only can maximize the mechanism feasibilities but also can ensure the positioning accuracy and sufficient workspace. Experiment and simulation are presented for validating the design process through the comparisons of the kinematical and structural performances.

Optimum Design of a 3-DOF Ultra-Precision Positioning Mechanism Using Boosters (부스터를 이용한 3자유도 초정밀 위치결정 기구의 최적설계)

  • Han Seog Young;Yi Byung-Ju;Kim Seon Jung;Kim Jong O;Chung Goo Bong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.101-109
    • /
    • 2005
  • Ultra-precision positioning systems basically require high natural frequency and sufficient workspace. To cope with this requirement, flexure hinge mechanisms have been proposed. However, previous designs are hard to satisfy the functional requirements of the system due to difficulty in modeling and optimizing process applying an independent axiomatic design. Therefore, this paper proposes a new design and design-order based on semi-coupled axiomatic design. A planar 3 DOF parallel type micro mechanism is chosen as an exemplary device. Based on preliminary kinematic analysis and dynamic modeling of the system, an optimal design has been carried out. To check the effectiveness of the optimal parameters obtained from theoretical approach, simulation is performed by FEM. The simulation result shows that a natural frequency of 200.53Hz and a workspace of $2000{\mu}m{\times}2000{\mu}m$ can be ensured, which is in very close agreement with the specified goal of design.