• Title/Summary/Keyword: Parallel MRI

Search Result 50, Processing Time 0.031 seconds

A study on the effect of the condition number in the magnetic field mapping of the Air-Core solenoid

  • Huang, Li;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.31-35
    • /
    • 2015
  • Mapping is a useful tool in the magnetic field analysis and design. In some specific research area, such as the nuclear magnetic resonance (NMR) or the magnetic resonance imaging (MRI), it is important to map the magnetic field in the interesting space with high accuracy. In this paper, an indirect mapping method in the center volume of an air-core solenoid is presented, based on the solution of the Laplace's equation for the field. Through the mathematical analysis on the mapping calculation, we know that the condition number of the matrix, generated by the measurement points, can greatly affect the error of mapping result. Two different arrangement methods of the measurement points in field mapping are described in this paper: helical cylindrical line (HCL) method and parallel cylindrical line (PCL) method. According to the condition number, the HCL method is recommended to measure the field components using one probe. As a simple example, we mapped the magnetic fields in a MRI main magnet system. Comparing the results in the different methods, it is feasible and convenient to apply the condition number to reduce the error in the field mapping calculation. Finally, some guidelines were presented for the magnetic field mapping in the center volume of the air-core solenoid.

Design of MRI Spectrometer Using 1 Giga-FLOPS DSP (1-GFLOPS DSP를 이용한 자기공명영상 스펙트로미터 설계)

  • 김휴정;고광혁;이상철;정민영;장경섭;이동훈;이흥규;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.12-21
    • /
    • 2003
  • Purpose : In order to overcome limitations in the existing conventional spectrometer, a new spectrometer with advanced functionalities is designed and implemented. Materials and Methods : We designed a spectrometer using the TMS320C6701 DSP capable of 1 giga floating point operations per second (GFLOPS). The spectrometer can generate continuously varying complicate gradient waveforms by real-time calculation, and select image plane interactively. The designed spectrometer is composed of two parts: one is DSP-based digital control part, and the other is analog part generating gradient and RF waveforms, and performing demodulation of the received RF signal. Each recover board can measure 4 channel FID signals simultaneously for parallel imaging, and provides fast reconstruction using the high speed DSP. Results : The developed spectrometer was installed on a 1.5 Tesla whole body MRI system, and performance was tested by various methods. The accurate phase control required in digital modulation and demodulation was tested, and multi-channel acquisition was examined with phase-array coil imaging. Superior image quality is obtained by the developed spectrometer compared to existing commercial spectrometer especially in the fast spin echo images. Conclusion : Interactive control of the selection planes and real-time generation of gradient waveforms are important functions required for advanced imaging such as spiral scan cardiac imaging. Multi-channel acquisition is also highly demanding for parallel imaging. In this paper a spectrometer having such functionalities is designed and developed using the TMS320C6701 DSP having 1 GFLOPS computational power. Accurate phase control was achieved by the digital modulation and demodulation techniques. Superior image qualities are obtained by the developed spectrometer for various imaging techniques including FSE, GE, and angiography compared to those obtained by the existing commercial spectrometer.

  • PDF

Effects of NEX on SNR and Artifacts in Parallel MR Images Acquired using Reference Scan

  • Heo, Yeong-Cheol;Lee, Hae-Kag;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.422-427
    • /
    • 2013
  • The aim of this study was to investigate effects of the number of acquisitions (NEX) on signal-to-noise (SNR) and artifacts in SENSE parallel imaging of magnetic resonance imaging (MRI). 3.0T MR System, 8 Channel sensitivity encoding (SENSE) head coils were used along with an in-vivo phantom. Reference sequence of 3D fast field echo (FFE) was consisted of NEX values of 2, 4, 6, 8, 10 and 12. The T2 turbo spin echo (TSE) sequence used for exams achieved SENSE factors of 1.2, 1.5, 1.8, 2.0, 2.2, 2.5, 2.8, 3.0, 3.2, 3.5, 3.8 and 4.0. Exams were conducted five times for each SENSE factor to measure signal intensity of the object, the posterior phase-encode direction and frequency direction. And SNR was calculated using mean values. SENSE artifacts were identified as background signal intensity in the phase-encoded direction using MRIcro. It was found that SNR increased but SENSE artifacts reduced with NEX of 4, 8 and 12 when the NEX increased in reference scan. It is therefore concluded that image quality can be improved with NEX of 4, 8 and 12 for reference scanning.

Comparison of Brain Activation Images Associated with Sexual Arousal Induced by Visual Stimulation and SP6 Acupuncture : fMRI at 3 Tesla (시각자극과 삼음교 자침으로 유발된 성적 흥분의 대뇌 활성화 영상의 비교 : 3 테슬라 기능적 자기공명영상법)

  • Choi, Nam-Gil;Han, Jae-Bok;Jang, Seong-Joo
    • Journal of radiological science and technology
    • /
    • v.32 no.2
    • /
    • pp.183-194
    • /
    • 2009
  • Purpose : This study was performed not only to compare the brain activation regions associated with sexual arousal induced by visual stimulation and SP6 acupuncture, but also to evaluate its differential neuro-anatomical mechanism in healthy women using functional magnetic resonance imaging (fMRI) at 3 Tesla (T). Subjects and methods : A total of 21 healthy right-handed female volunteers (mean age 22 years, range 19 to 32) underwent fMRI on a 3T MR scanner. The stimulation paradigm for sexual arousal consisted of two alternating periods of rest and activation. It began with a 1-minute rest period, 3 minutes of stimulation with either of an erotic video film or SP6 acupuncture, followed by 1-minute rest. In addition, a comparative study on the brain activation patterns between an acupoint and a shampoint nearby GB37 was performed. The fMRI data were obtained from 20 slices parallel to the AC-PC line on an axial plane, giving a total of 2,000 images. The mean activation maps were constructed and analyzed by using the statistical parametric mapping (SPM99) software. Results : As comparison with the shampoint, the acupoint showed 5 times and 2 times higher activities in the neocortex and limbic system, respectively. Note that brain activation in response to stimulation with the shampoint was not observed in the regions including the HTHL in the diencephalon, GLO and AMYG in the basal ganglia, and SMG in the parietal lobe. In the comparative study of visual stimulation vs. SP6 acupuncture, the mean activation ratio of stimulus was not significantly different to each other in both the neocortex and the limbic system (p < 0.05). The mean activities induced by both stimuli were not significantly different in the neocortex, whereas the acupunctural stimulation showed higher activity in the limbic system (p < 0.05). Conclusions : This study compared the differential brain activation patterns and the neural mechanisms for sexual arousal, which were induced by visual stimulation and SP6 acupuncture by using 3T fMRI. These findings will be useful to understand the theory of traditional acupuncture and acupoint channel in scientific point of view.

  • PDF

자기공명 영상촬영을 위한 임의로 선택된 모양의 최소인덕턴스 경사자계코일의 설계 (Minimum-Inductance MRI Gradient Coil Design with Arbitrarily-Selected Shape)

  • Lee, J.K.;Yang, Y.J.;Yi, Y.;Cho, Z.H.;Oh, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.85-87
    • /
    • 1994
  • This paper proposes a new inductance minimization scheme for a gradient system of arbitrarily selected shape. Although it is important to minimize the gradient coil inductance to reduce the current switching time, such minimization has been possible only for cylindrical or parallel biplanar coils. By using small current loops on arbitrarily selected surface as optimization elements, the inductance of the whole circuit can be minimized using the loop's self- and mutual-inductances. Wire positions can be easily derived from the loop current distribution. Preliminary studies for the design of x-directional surface gradient coil show the utility of tile proposed gradient coil design scheme.

  • PDF

Neural correlates of visual mean representation (시각적 평균 표상의 신경기제)

  • Chong, Sang-Chul;Shin, Kil-Ho;Cho, Shin-Ho
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.1
    • /
    • pp.75-88
    • /
    • 2008
  • Visual scene contains lots of redundant information. To process this redundant information without increasing brain's volume, human visual system may summarize incoming information. If similar but different information are given to visual system, visual system extracts statistical properties of the information. One example of the statistical representation is representation of mean size. The mean representation is accurate and durable. The process of mean representation is suggested to be parallel. However, previous studies on the mean representation mostly used behavioral methods. The purpose of this study was to investigate which neural regions extracted the mean size of a set of circles using fMRI method. According to previous studies, BOLD signal of certain areas that were in charge of cousin stimuli decreased when the same stimuli presented repetitively. We used this paradigm and found that BOLD signal of right occipital area was decreased when same mean site was presented repeatedly. This results suggest that right occipital area is the locus of mean representation of visual stimuli.

  • PDF

A study on the Cochlear View in Multichannel Cochlear Implantees (인공와우 이식술 환자의 Cochlear View 촬영에 관한 연구)

  • Kweon, Dae-Cheol;Kim, Jeong-Hee;Kim, Seong-Lyong;Kim, Hae-Seong;Lee, Yong-Woo
    • Journal of radiological science and technology
    • /
    • v.22 no.2
    • /
    • pp.27-32
    • /
    • 1999
  • Cochlear implant poses a contraindication to the magnetic resonance imaging(MRI) process, because MRI generates artifacts, inducing an electrical current and causing device magnetization. CT is relatively expensive and the metal electrodes scatter the image. Post-implantation radiological studies using anterior-posterior transorbital, submental-vertex and lateral views, the intracochlear electrodes are not well displayed. Therefore, the authors developed a special view, which we call the cochlear view. The patient is sitting in front of a vertical device. Then the midsagittal plane is adjusted to form an angle of $15^{\circ},\;30^{\circ}$, and $45^{\circ}$ with the film. The flexion of the neck is adjusted to make the infraorbitomeatal line(IOML) is parallel with the transverse axis of the film. The central ray is directed to exit from the skull at point which is 3.0 cm anterior and 2.0 cm superior to the EAM(external auditory meatus). Results have shown that single radiography of the cochlear view provides sufficient information to demonstrate the position of the electrodes array and the depth of insertion in cochlear. Radiography of the cochlear view in angle of $45^{\circ}$ is an excellent image. The cochlear view gives the greatest amount of medical information with the least radiation and lowest medical cost. It can be widely used in all cochlear implant clinics.

  • PDF

Evaluation of the Usefulness of PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) Technique to Reduce the Magnetic susceptibility artifact (Magnetic susceptibility artifact를 줄이기 위한 PROPELLER 확산강조영상기법의 유용성에 대한 평가)

  • Cho, Jae-Hwan
    • Journal of Digital Contents Society
    • /
    • v.11 no.1
    • /
    • pp.73-78
    • /
    • 2010
  • This study attempted to examine whether the propeller diffusion weighted image method may remove magnetic susceptibility artifacts caused by metallic materials. A comparison of occurrence rates of magnetic susceptibility artifacts in the four regions, both temporal lobes, pons, and orbit, between b = 0 and b = 1,000 s/mm2 images was made after obtaining echo-planar diffusion weighted image, propeller diffusion weighted image, and ADC map images, respectively, from a total of 20 patients who had MRI shots taken of their brain and were found to be with retained metallic foreign bodies within their teeth using a 3.0T MR scanner. In the case of echo-planar diffusion weighted image technique, the presence of metallic materials may bring in some limits on accurate diagnosis due to magnetic susceptibility artifacts, while the propeller diffusion weighted image technique where magnetic susceptibility artifacts decrease is expected to be more useful in ensuring accurate diagnosis in the clinical context.

Cerebrocortical Regions Associated with Implicit and Explicit Memory Retrieval Under the Conceptual Processing: BOLD Functional MR Imaging

  • Kim, Hyung-Joong;Kang, Hyung-Geun;Seo, Jung-Jin;Jung, Kwang-Woo;Eun, Sung-Jong;Park, Jin-Kyun;Yoon, Woong;Park, Tae-Jin
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.111-111
    • /
    • 2002
  • Purpose: This study is to compare the distinct brain activation between implicit and explicit memory retrieval tasks using a non-invasive blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging(fMRI). Materials & Methods: We studied seven right-handed, healthy volunteers aged 21-25 years(mean;22 years) were scanned under a 1.5T Signa Horizon Echospeed MR imager(GE Medical Systems, Milwaukee, U.S.A.). During the implicit and explicit memory retrieval tasks of previously teamed words under the conceptual processing, we acquired fMRI data using gradient-echo EPI with 50ms TE, 3000ms TR, 26cm${\times}$26cm field-of-view, 128${\times}$128 matrix, and ten slices(6mm slice thickness, 1 mm gap) parallel to the AC-PC(anterior commissure and posterior commissure) line. By using the program of statistical parametric mapping(SPM99), functional activation maps were reconstructed and quantified.

  • PDF

Effectiveness of 32-element Surface Coil Array for Accelerated Volume-Targeted Breath-Hold Coronary MRA (체적 지향형 호흡정지 자기공명 조영술의 가속화에 대한 32채널 코일 어레이의 효용성)

  • Lee, Hyun-Yeol;Suh, Jin-Suck;Park, Jae-Seok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.137-145
    • /
    • 2009
  • Purpose : To compare 12 and 32-element surface coil arrays for highly accelerated coronary magnetic resonance angiography (MRA) using parallel imaging. Materials and Methods : Steady state free precession coronary MRA was performed in 5 healthy volunteers at 1.5 T whole body MR scanner using both 12 and 32-element surface coil arrays. Left anterior descending and right coronary artery data sets were acquired for each volunteer. Data sets were sub-sampled for parallel imaging using reduction factors from 1 to 6. Mean geometry factor (g-factor), maximum g-factor, and artifact level were calculated for each of the two coil arrays. Results : Over all reduction factors, the mean and maximum g-factors and artifact level were significantly reduced using the 32-element array compared to the 12element array (P << 0.1). The mean g-factor was sensitive to the imaging orientations of coronary arteries while the maximum g-factor and artifact level were independent of orientation. Conclusion : The 32-element surface coil array significantly improves artifact and noise suppression for highly accelerated coronary MRA using parallel imaging. The increased acceleration factors made feasible with the 32-element array offer the potential to enhance spatial resolution or increase volumetric coverage for 3D coronary MRA.

  • PDF