• 제목/요약/키워드: Parallel Individual Charging

검색결과 3건 처리시간 0.016초

직·병렬 하이브리드 충전 구조를 사용한 배터리 균형 충전 (Battery Cell Balancing with Hybrid Architecture of Serial and Parallel Charging)

  • 정의한;양창주;한승호;김형석
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권4호
    • /
    • pp.609-613
    • /
    • 2016
  • 전기자동차 배터리 셀들 간의 불균형 충전 문제를 해결하기 위해, 직병렬 하이브리드 충전 구조를 개발하였다. 이 방법은 직렬 부분에 의해 주 충전이 수행되며 병렬 부분에 의해 밸런싱이 수행되는데, 이 때, 직렬 부분은 부피가 크고 무겁지만 병렬 부분은 직렬 부분보다 작고 가볍다. 개별 배터리 셀 전압을 측정하기 위한 센서 어레이, 듀티비 제어를 포함한 IGBT, 그리고 배터리 관리 시스템은 제안된 시스템의 핵심 요소이다.

Cell-balancing Algorithm for Paralleled Battery Cells using State-of-Charge Comparison Rule

  • La, Phuong-Ha;Choi, Sung-Jin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.156-158
    • /
    • 2018
  • The inconsistencies between paralleled battery cells are becoming more considerable issue in high capacity battery applications like electric vehicles. Due to differences in state-of-charge (SOC) and internal resistance within individual cells in parallel, charging or discharging current is not appropriately balanced to each cell in terms of SOC, which may shorten the lifetime or sometimes cause safety issues. In this paper, an intelligent cell-balancing algorithm is proposed to overcome the inconsistency issue especially for paralleled battery cells. In this scheme, SOC information collected in the sub-BMS module is sent to the main-BMS module, where the number of parallel cells to be connected to DC bus is continuously updated based on the suggested SOC comparison rule. To verify the method, operation of the algorithm on 4 paralleled battery cells are simulated on Matlab/Simulink. The simulation result shows that the SOCs of paralleled cells are evenly redistributed. It is expected that the proposed algorithm provides high reliable and prolong the life cycle and working capacity of the battery pack.

  • PDF

수소주거모델의 전력 거래 참여 방안 고찰 (A Study on Power Trading Methods for in a Hydrogen Residential Model )

  • 정기석;정태영
    • 한국수소및신에너지학회논문집
    • /
    • 제34권2호
    • /
    • pp.91-99
    • /
    • 2023
  • Participation in power trading using surplus power is considered a business model active in the domestic energy trade market, but it is limited only if the legal requirements according to the type, capacity, and use of the facilities to be applied for are satisfied. The hydrogen residential demonstration model presented in this paper includes solar power, energy storage system (ESS), fuel cell, and water electrolysis facilities in electrical facilities for private use with low-voltage power receiving system. The concept of operations strategy for this model focuses on securing the energy self-sufficiency ratio of the entire system, securing economic feasibility through the optimal operation module installed in the energy management system (EMS), and securing the stability of the internal power balancing issue during the stand-alone mode. An electric facility configuration method of a hydrogen residential complex demonstrated to achieve this operational goal has a structure in which individual energy sources are electrically connected to the main bus, and ESS is also directly connected to the main bus instead of a renewable connection type to perform charging/discharging operation for energy balancing management in the complex. If surplus power exists after scheduling, participation in power trading through reverse transmission parallel operation can be considered to solve the energy balancing problem and ensure profitability. Consequentially, this paper reviews the legal regulations on participation in electric power trading using surplus power from hydrogen residential models that can produce and consume power, gas, and thermal energy including hybrid distributed power sources, and suggests action plans.