• Title/Summary/Keyword: Parallel Coupled-line Filer

Search Result 3, Processing Time 0.018 seconds

Miniaturization of Parallel Coupled-Line Filter using Lumped Capacitors and Grounding (집중 소자 캐패시터와 접지를 이용한 평행 결합 선로 필터의 소형화 연구)

  • Myoung Seong-Sik;Yook Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.888-895
    • /
    • 2004
  • This paper proposes new miniaturization method of parallel coupled line filter by using capacitors and grounding. Proposed method can reduce resonator size by using only a small number of capacitor and grounding of parallel coupled line filter which is conventional in field of RF filters because of its design and fabrication simplicity. This paper applies the miniaturization method of transmission line and parallel coupled line to parallel coupled line filter, and presents that grounding can reduce the number of shut capacitors. Presented miniaturized method has merits of miniaturization of parallel coupled line, harmonic suppression, and improvement of high frequency skirt with harmonic suppression. For verification of proposed method, this paper presents a hairpin filter, which has 900 MHz center frequency and 10 % FBW, miniaturized to λ/4 by proposed method.

Bandwidth Enhanced Miniaturization Method of Parallel Coupled-Line Filter (대역폭 특성이 개선된 평행 결합 선로 필터의 소형화 기법)

  • Myoung, Seong-Sik;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.126-135
    • /
    • 2007
  • This paper proposes a new miniaturization method for a parallel coupled line filter with enhanced bandwidth characteristics. A previous method incorporated several advantages, such as size reduction through the use of only a small number of capacitors, in addition to grounding, suppression of harmonic characteristics, and improved skirt characteristics for the parallel coupled line filter, which is conventional in the field of RE filters due to its design and fabrication simplicity. However, the previous method also has disadvantages related to the bandwidth shrinkage of the miniaturized filters. In this paper, the amount of bandwidth shrinkage is analyzed in terms of the relationship between the loaded Q(quality factor) and the group delay of a resonator. Moreover, the reduction in the bandwidth is solved by a design with new design equations. To show the validity of the proposed method, a hairpin filter with a center frequency of 5.2 GHz and an fractional bandwidth(FBW) of 10% was scaled down to half its original dimension by the proposed method with the enhanced bandwidth characteristics. The measured result shows a high level of agreement with theoretical results.

Miniaturized Hairpin Tunable Filter with the Single Control Voltage (단일 제어 전원을 갖는 소형화된 헤어핀 튠어블 필터)

  • Myoung, Seong-Sik;Hong, Young-Pyo;Jang, Byung-Jun;Lee, Yong-Shik;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.10
    • /
    • pp.1126-1135
    • /
    • 2007
  • This paper presents the varactor-tuned miniaturized hairpin tunable filter with a single control voltage. The previously proposed miniaturization method is a very straight-forward method to miniaturize a parallel coupled-line filter. In this paper, the miniaturized hairpin tunable filter is proposed with the constant ratio rule of that the capacitances of the each stage always have constant ratio without any dependency to miniaturized electrical length. To show the validity of the proposed method, a 3rd order 0.5 dB ripple Chebyshev fitter with a center frequency of 900 MHz and a fractional bandwidth(FBW) of 10 % was designed and fabricated. The fabricated filter was based on CER-10 substrate of Taconic Inc. with 1SV277 varactor diode of Toshiba Inc. The center frequency of the fabricated filter can be changed from 606 MHz to 944 MHz, 338 MHz with the control voltage from 0.5 V to 4 V. The insertion loss of the proposed filter is increased with the increment of the control voltage, and the filter characteristics are well reserved expect of slight change of the bandwidth with the various control voltage.