The Active Appearance Model (AAM) is a class of deformable models, which, in the segmentation process, integrates the priori knowledge on the shape and the texture and deformation of the structures studied. This model in its sequential form is computationally intensive and operates on large data sets. This paper presents another framework to implement the standard version of the AAM model. We suggest a distributed and parallel approach justified by the characteristics of the model and their potentialities. We introduce a schema for the representation of the overall model and we study of operations that can be parallelized. This approach is intended to exploit the benefits build in the area of advanced image processing.
KSII Transactions on Internet and Information Systems (TIIS)
/
제6권3호
/
pp.954-972
/
2012
Content Delivery Networks (CDN) server loads that fluctuant necessitate CDN to improve its service scalability especially when the peak load exceeds its service capacity. The peer assisted scheme is widely used in improving CDN scalability. However, CDN operators do not want to lose profit by overusing it, which may lead to the CDN resource utilization reduced. Therefore, improving CDN scalability moderately and guarantying CDN resource utilization maximized is necessary. However, when and how to use the peer-assisted scheme to achieve such improvement remains a great challenge. In this paper, we propose a new method called Dynamic Moderate Peer-assisted Method (DMPM), which uses time series analysis to predict and decide when and how many server loads needs to offload. A novel peer-assisted mechanism based on the prediction designed, which can maximize the profit of the CDN operators without influencing scalability. Extensive evaluations based on an actual CDN load traces have shown the effectiveness of DMPM.
Coordination among users is an inevitable but time-consuming operation in wireless networks. It severely limit the system performance when the data rate is high. We present FC-MAC, a novel MAC protocol that can complete a contention within one contention slot over a joint frequency-code domain. When a node takes part in the contention, it generates randomly a contention vector (CV), which is a binary sequence of length equal to the number of available orthogonal frequency division multiplexing (OFDM) subcarriers. In FC-MAC, different user is assigned with a distinct signature (i.e., PN sequence). A node sends the signature at specific subcarriers and uses the sequence of the ON/OFF states of all subcarriers to indicate the chosen CV. Meanwhile, every node uses the redundant antennas to detect the CVs of other nodes. The node with the minimum CV becomes the winner. The experimental results show that, the collision probability of FC-MAC is as low as 0.05% when the network has 100 nodes. In comparison with IEEE 802.11, contention time is reduced by 50-80% and the throughput gain is up to 200%.
자바의 쓰레드는 다중 처리 환경에서 하나의 프로그램 공간 내의 독립적인 프로세스로 취급되는 객체 요소이므로 병렬처리를 위한 독립적인 프로세스로 활용할 수 있다. 또한, 자바의 동기화 메커니즘과 쓰레드를 활용하면 병렬 처리를 수행하는 응용프로그램을 쉽게 작성할 수 있다. 이에 따라, 자바의 병렬 처리 지원 기능을 분산된 컴퓨팅 환경에 적용하기 위한 많은 연구 결과가 있다. 본 논문에서는 레거시 자바 프로그램에 포함된 쓰레드를 분산된 컴퓨팅 환경에서 병렬 수행 하도록 지원하는 시스템 환경을 제안한다. TORB(Transparent Object Request Broker)라고 명명된 본 시스템은 프로그래밍 투명성을 지원하므로 이미 작성된 레거시 자바 프로그램을 간단한 변환 과정을 거친 후 병렬 수행 하도록 지원한다. TORB는 본 연구팀에서 이미 발표한 분산 프로그래밍 도구의 기능을 확장한 것이며, 이는 지정된 기능을 지정된 컴퓨터에서 수행하도록 지원하는 전형적인 분산처리 기능만을 보유하고 있었다.
We study parallel processing techniques for the R programming language of high performance computing technology. In this study, we used massively parallel computing system which has 25,408 cpu cores. We conducted a performance evaluation of a distributed memory system using MPI and of a the shared memory system using OpenMP. Our findings are summarized as follows. First, For some particular algorithms, parallel processing is about 150 times faster than serial processing in R. Second, the distributed memory system gets faster as the number of nodes increases while shared memory system is limited in the improvement of performance, due to the limit of the number of cpus in a single system.
International journal of advanced smart convergence
/
제8권4호
/
pp.194-199
/
2019
As the performance of the system increases, more parallelized data is being processed than single processing of data. Today's cpu structure has been developed to leverage multicore, and hence data processing methods are being developed to enable parallel processing. In recent years desktop cpu has increased multicore, data is growing exponentially, and there is also a growing need for data processing as artificial intelligence develops. This neural network of artificial intelligence consists of a matrix, making it advantageous for parallel processing. This paper aims to speed up the processing of the system by using raspberrypi to implement the cluster building and parallel processing system against the backdrop of the foregoing discussion. Raspberrypi is a credit card-sized single computer made by the raspberrypi Foundation in England, developed for education in schools and developing countries. It is cheap and easy to get the information you need because many people use it. Distributed processing systems should be supported by programs that connected multiple computers in parallel and operate on a built-in system. RaspberryPi is connected to switchhub, each connected raspberrypi communicates using the internal network, and internally implements parallel processing using the Message Passing Interface (MPI). Parallel processing programs can be programmed in python and can also use C or Fortran. The system was tested for parallel processing as a result of multiplying the two-dimensional arrangement of 10000 size by 0.1. Tests have shown a reduction in computational time and that parallelism can be reduced to the maximum number of cores in the system. The systems in this paper are manufactured on a Linux-based single computer and are thought to require testing on systems in different environments.
본 논문은 공유 및 분산 메모리 구조를 가진 병렬 컴퓨터의 프로그래밍 환경을 지원하기 위하여 ParaC 언어를 설계하고 구현한 내용을 기술한다. ParaC 언어는 확장성 높은 병렬 컴퓨터의 시스템 자원을 사용자가 효과적으로 이용할 수 있도록 설계되었다. 이것은 C 언어에 공유 메모리 환경을 위한 병렬 구문과 동기화 구문, 그리고 분산 메모리 환경을 위한 원격 태스크 구문을 추가함으로써 이루어졌다. 언어의 구현을 위하여 C 언어로의 번역 방법을 기술하였으며, 이 방법을 사용한 번역기와 확장 구문을 위한 실행시간 라이브러리를 구현하였다.
Many researchers have recently studied multi-level formulation strategies to solve the MDO problems and they basically distributed the coupling compatibilities across all disciplines, while single-level formulations concentrate all the controls at the system-level. In addition, approximation techniques became remedies for computationally expensive analyses and simulations. This paper studies comparisons of the MDO methods with respect to computing performance considering both conventional sequential and modem distributed/parallel processing environments. The comparisons show Individual Disciplinary Feasible (IDF) formulation is the most efficient for sequential processing and IDF with approximation (IDFa) is the most efficient for parallel processing. Results incorporating to popular design examples show this finding. The author suggests design engineers should firstly choose IDF formulation to solve MDO problems because of its simplicity of implementation and not-bad performance. A single drawback of IDF is requiring more memory for local design variables and coupling variables. Adding cheap memories can save engineers valuable time and effort for complicated multi-level formulations and let them free out of no solution headache of Multi-Disciplinary Analysis (MDA) of the Multi-Disciplinary Feasible (MDF) formulation.
The past several years have witnessed an ever-increasing acceptance and adoption of parallel processing, both for high performance scientific computing as well as for more general purpose applications. Furthermore with increasing needs to perform the complex flow calculations in an efficient manner, the use of the message passing model on distributed networks has emerged as an important alternative to the expensive supercomputers. This work attempts to provide a generic framework to enable the parallelization of all CFD-related works using the master-slave model. This framework consists of (1) input geometry, (2) domain decomposition, (3) grid generation, (4) flow computations, (5) flow visualization, and (6) output display as the sequential components, but performs computations for (2) to (5) in parallel on the workstation clustering. The flow computations are parallized by having multiple copies of the flow-code to solve a PDE on different spatial regions on different processors, while their flow data are exchanged across the region boundaries, and the solution is time-stepped. The Parallel Virtual Machine (PVM) is used for distributed communication in this work.
스마트-시티는 스마트-시티의 사물인터넷(Internet of Things: IoT) 디바이스를 비롯한 수많은 인프라를 지능적으로 관리하고, 다양한 스마트 어플리케이션을 도시민에게 제공한다. 스마트-시티에서는 스마트-시티 어플리케이션에서 필요한 다양한 정보를 제공하기 위하여 수많은 사물인터넷 기기들로부터 끊임없이 발생하는 대규모의 스트림 빅-데이터를 지능적으로 처리하는 기능이 필요하다. 하지만, 스마트-시티에서 대규모의 스트림 빅-데이터를 처리하는 것에는 실시간 처리와 관련된 제약들이 존재한다. 본 스마트-시티-사업단에서는 선행 연구에서 스마트-시티미들웨어와 이를 이용한 스트림-리즈닝 방법론 및 시스템을 개발하였다. 스마트-시티에서 스마트 서비스를 제공하기 위하여, 스마트-시티-사업단에서는 스트림-리즈닝을 사용하는 방법론을 사용한다. 이 스트림-리즈닝은 대용량 데이터의 실시간 처리를 필요로 한다. 따라서, 후속연구로서 스마트-시티미들웨어의 클라우드-컴퓨팅 플랫폼을 이용하여 스트림-리즈닝을 위한 실시간 분산병렬처리 클라우드-컴퓨팅 방법론과 시스템을 개발하였다. 본 논문에서는 스마트-시티에서 발생하는 사물인터넷 빅-데이터를 스트림-리즈닝에 사용하기 위하여 이 후속연구에서 개발된 클라우드 기반 실시간 분산병렬처리 연구결과를 소개한다. 스마트-시티의 각종 센서들로부터 전송되어지는 사물인터넷 빅-데이터를 사용하여 스트림-리즈닝하는 데 필요한 클라우드-컴퓨팅 기반의 실시간 분산처리 방법론과 시스템을 소개하고 있으며, 이 방법론을 선행연구에서 개발한 스마트-시티 미들웨어에 구현하여 실시간 분산처리 성능을 평가한 것을 소개한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.