• 제목/요약/키워드: Parallel/Distributed Computing Environment

검색결과 62건 처리시간 0.024초

자바를 위한 분산된 병렬 컴퓨팅 환경 (Distributed Parallel Computing Environment for Java)

  • 이상윤;김승호
    • 전자공학회논문지CI
    • /
    • 제41권6호
    • /
    • pp.23-37
    • /
    • 2004
  • 자바의 쓰레드는 다중 처리 환경에서 하나의 프로그램 공간 내의 독립적인 프로세스로 취급되는 객체 요소이므로 병렬처리를 위한 독립적인 프로세스로 활용할 수 있다. 또한, 자바의 동기화 메커니즘과 쓰레드를 활용하면 병렬 처리를 수행하는 응용프로그램을 쉽게 작성할 수 있다. 이에 따라, 자바의 병렬 처리 지원 기능을 분산된 컴퓨팅 환경에 적용하기 위한 많은 연구 결과가 있다. 본 논문에서는 레거시 자바 프로그램에 포함된 쓰레드를 분산된 컴퓨팅 환경에서 병렬 수행 하도록 지원하는 시스템 환경을 제안한다. TORB(Transparent Object Request Broker)라고 명명된 본 시스템은 프로그래밍 투명성을 지원하므로 이미 작성된 레거시 자바 프로그램을 간단한 변환 과정을 거친 후 병렬 수행 하도록 지원한다. TORB는 본 연구팀에서 이미 발표한 분산 프로그래밍 도구의 기능을 확장한 것이며, 이는 지정된 기능을 지정된 컴퓨터에서 수행하도록 지원하는 전형적인 분산처리 기능만을 보유하고 있었다.

Infrastructure of Grid-based Distributed Remotely Sensed Images Processing Environment and its Parallel Intelligence Algorithms

  • ZHENG, Jiang;LUO, Jian-Cheng;Hu, Cheng;CHEN, Qiu-Xiao
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1284-1286
    • /
    • 2003
  • There is a growing demand on remotely sensed and GIS data services in modern society. However, conventional WEB applications based on client/server pattern can not meet the criteria in the future . Grid computing provides a promising resolution for establishing spatial information system toward future applications. Here, a new architecture of the distributed environment for remotely sensed data processing based on the middleware technology was proposed. In addition, in order to utilize the new environment, a problem had to be algorithmically expressed as comprising a set of concurrently executing sub-problems or tasks. Experiment of the algorithm was implemented, and the results show that the new environmental can achieve high speedups for applications compared with conventional implementation.

  • PDF

Comparison of Distributed and Parallel NGS Data Analysis Methods based on Cloud Computing

  • Kang, Hyungil;Kim, Sangsoo
    • International Journal of Contents
    • /
    • 제14권1호
    • /
    • pp.34-38
    • /
    • 2018
  • With the rapid growth of genomic data, new requirements have emerged that are difficult to handle with big data storage and analysis techniques. Regardless of the size of an organization performing genomic data analysis, it is becoming increasingly difficult for an institution to build a computing environment for storing and analyzing genomic data. Recently, cloud computing has emerged as a computing environment that meets these new requirements. In this paper, we analyze and compare existing distributed and parallel NGS (Next Generation Sequencing) analysis based on cloud computing environment for future research.

Debugging of Parallel Programs using Distributed Cooperating Components

  • Mrayyan, Reema Mohammad;Al Rababah, Ahmad AbdulQadir
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12spc호
    • /
    • pp.570-578
    • /
    • 2021
  • Recently, in the field of engineering and scientific and technical calculations, problems of mathematical modeling, real-time problems, there has been a tendency towards rejection of sequential solutions for single-processor computers. Almost all modern application packages created in the above areas are focused on a parallel or distributed computing environment. This is primarily due to the ever-increasing requirements for the reliability of the results obtained and the accuracy of calculations, and hence the multiply increasing volumes of processed data [2,17,41]. In addition, new methods and algorithms for solving problems appear, the implementation of which on single-processor systems would be simply impossible due to increased requirements for the performance of the computing system. The ubiquity of various types of parallel systems also plays a positive role in this process. Simultaneously with the growing demand for parallel programs and the proliferation of multiprocessor, multicore and cluster technologies, the development of parallel programs is becoming more and more urgent, since program users want to make the most of the capabilities of their modern computing equipment[14,39]. The high complexity of the development of parallel programs, which often does not allow the efficient use of the capabilities of high-performance computers, is a generally accepted fact[23,31].

웹 환경에서의 병렬/분산 처리를 위한 동적 호스트 관리 기법의 개발 (Development of the Dynamic Host Management Scheme for Parallel/Distributed Processing on the Web)

  • 송은하;정영식
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권3호
    • /
    • pp.251-260
    • /
    • 2002
  • 웹에 존재하는 수많은 유휴상태 호스트들을 이용한 병렬/분산 처리는 대규모 응용문제에 대해 높은 가격 대 성능비를 가진다. 웹 환경에서 병렬/분산 처리를 위하여 호스트들의 이질성 및 가변성, 자율성, 지속적인 성능보장과 참여 호스트 수 변화 등 예측할 수 없는 상태에 대한 해결책을 제시하여야 한다. 본 논문은 지리적으로 떨어져 있는 참여 호스트들의 작업 처리를 성능에 기반하는 적응적 작업 재할당 전략을 제안한다. 또한, 대규모 응용문제의 병렬 처리 중에 호스트 수가 변하는 동적 환경에 대해 동적 호스트 관리 스킴을 제공한다. 본 논문에서는 PDSWeb (Parallel/Distributed Scheme on Web) 시스템을 구현하여, 많은 연산량을 지닌 랜더링 이미지 생성에 적용하여 평가한다. 그 결과 호스트의 가변성에 대해 적응적 작업 재할당은 최고 90%이상 향상하였으며. 호스트 추가와 삭제에 따른 성능 향상 정도를 보인다.

병렬컴퓨팅 환경에서의 대용량 퍼지 추론 (Fuzzy Inference of Large Volumes in Parallel Computing Environment)

  • 김진일;박찬량;이동철;이상구
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.13-16
    • /
    • 2000
  • In fuzzy expert systems or database systems that have huge volumes of fuzzy data or large fuzzy rules, the inference time is much increased. Therefore, a high performance parallel fuzzy computing environment is needed. In this paper, we propose a parallel fuzzy inference mechanism in parallel computing environment. In this, fuzzy rules are distributed and executed simultaneously. The ONE_TO_ALL algorithm is used to broadcast the fuzzy input vector to the all nodes. The results of the MIN/MAX operations are transferred to the output processor by the ALL_TO_ONE algorithm. By parallel processing of fuzzy rules or data, the parallel fuzzy inference algorithm extracts effective parallel ism and achieves a good speed factor.

  • PDF

분산컴퓨팅 환경에서 공력 설계최적화의 효율성 연구 (A STUDY ON THE EFFICIENCY OF AERODYNAMIC DESIGN OPTIMIZATION IN DISTRIBUTED COMPUTING ENVIRONMENT)

  • 김양준;정현주;김태승;손창호;조창열
    • 한국전산유체공학회지
    • /
    • 제11권2호
    • /
    • pp.19-24
    • /
    • 2006
  • A research to evaluate the efficiency of design optimization was carried out for aerodynamic design optimization problem in distributed computing environment. The aerodynamic analyses which take most of computational work during design optimization were divided into several jobs and allocated to associated PC clients through network. This is not a parallel process based on domain decomposition in a single analysis rather than a simultaneous distributed-analyses using network-distributed computers. GBOM(gradient-based optimization method), SAO(Sequential Approximate Optimization) and RSM(Response Surface Method) were implemented to perform design optimization of transonic airfoils and evaluate their efficiencies. dimensional minimization followed by direction search involved in the GBOM was found an obstacle against improving efficiency of the design process in the present distributed computing system. The SAO was found fairly suitable for the distributed computing environment even it has a handicap of local search. The RSM is apparently the most efficient algorithm in the present distributed computing environment, but additional trial and error works needed to enhance the reliability of the approximation model deteriorate its efficiency from the practical point of view.

An Internet-based computing framework for the simulation of multi-scale response of structural systems

  • Chen, Hung-Ming;Lin, Yu-Chih
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.17-37
    • /
    • 2011
  • This paper presents a new Internet-based computational framework for the realistic simulation of multi-scale response of structural systems. Two levels of parallel processing are involved in this frame work: multiple local distributed computing environments connected by the Internet to form a cluster-to-cluster distributed computing environment. To utilize such a computing environment for a realistic simulation, the simulation task of a structural system has been separated into a simulation of a simplified global model in association with several detailed component models using various scales. These related multi-scale simulation tasks are distributed amongst clusters and connected to form a multi-level hierarchy. The Internet is used to coordinate geographically distributed simulation tasks. This paper also presents the development of a software framework that can support the multi-level hierarchical simulation approach, in a cluster-to-cluster distributed computing environment. The architectural design of the program also allows the integration of several multi-scale models to be clients and servers under a single platform. Such integration can combine geographically distributed computing resources to produce realistic simulations of structural systems.

분산컴퓨팅 환경에서 공력 설계최적화의 효율성 연구 (A STUDY ON THE EFFICIENCY OF AERODYNAMIC DESIGN OPTIMIZATION USING DISTRIBUTED COMPUTATION)

  • 김양준;정현주;김태승;조창열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.163-167
    • /
    • 2005
  • A research to evaluate efficiency of design optimization was performed for aerodynamic design optimization problem in distributed computing environment. The aerodynamic analyses which take most of computational work during design optimization were divided into several jobs and allocated to associated PC clients through network. This is not a parallel process based on domain decomposition rather than a simultaneous distributed-analyses process using network-distributed computers. GBOM(gradient-based optimization method), SAO(Sequential Approximate Optimization) and RSM(Response Surface Method) were implemented to perform design optimization of transonic airfoil and to evaluate their efficiencies. One dimensional minimization followed by direction search involved in the GBOM was found an obstacle against improving efficiency of the design process in distributed computing environment. The SAO was found quite suitable for the distributed computing environment even it has a handicap of local search. The RSM is apparently the fittest for distributed computing environment, but additional trial and error works needed to enhance the reliability of the approximation model are annoying and time-consuming so that they often impair the automatic capability of design optimization and also deteriorate efficiency from the practical point of view.

  • PDF

빅데이터 분석을 위한 슈퍼컴퓨터 환경에서 R의 병렬처리 (Parallel Computing Environment for R with on Supercomputer Systems)

  • 이상열;원중호
    • 한국경영과학회지
    • /
    • 제39권4호
    • /
    • pp.19-31
    • /
    • 2014
  • We study parallel processing techniques for the R programming language of high performance computing technology. In this study, we used massively parallel computing system which has 25,408 cpu cores. We conducted a performance evaluation of a distributed memory system using MPI and of a the shared memory system using OpenMP. Our findings are summarized as follows. First, For some particular algorithms, parallel processing is about 150 times faster than serial processing in R. Second, the distributed memory system gets faster as the number of nodes increases while shared memory system is limited in the improvement of performance, due to the limit of the number of cpus in a single system.