• Title/Summary/Keyword: Paraffin Fuel

Search Result 49, Processing Time 0.022 seconds

A Study on the Combustion Characteristics of Paraffin wax/LDPE Blended fuel (Paraffin wax/LDPE 혼합 연료의 연소 특성에 관한 연구)

  • Kim, Soo-Jong;Cho, Jung-Tae;Lee, Jung-Pyo;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.29-38
    • /
    • 2010
  • The experimental study on paraffin wax/LDPE blended fuel for hybrid rocket was performed. Various combustion characteristics of blended fuel were compared with pure paraffin, HTPB, HDPE and SP-1a fuel in order to evaluate the performance of blended fuel. The regression rate of lab-scale and large-scale motor using pure paraffin fuel was increased by 10.2 and 9.8 factor when respectively compared to that of HDPE. The regression rate factor of blended fuel was 3.4 in which the regression rate of blended fuel was higher than that of HTPB and HDPE, but lower than that of pure paraffin, SP-1a fuel. The values of characteristic velocity and specific impulse of blended fuel was higher than those of pure paraffin, HTPB and HDPE, and almost the same as SP-1a fuel. As these results, it was confirmed that blended fuel can be an effective solid fuel for hybrid rocket.

A Study on the Combustion Characteristics of Diesel Fuel Droplet with Additive Oxygenate and Paraffin (함산소 및 파라핀계 혼합 디젤유 액적의 연소특성에 관한 연구)

  • Kim, Bong-Seock;Miyamoto, Noboru
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.49-56
    • /
    • 2006
  • The single droplet combustion characteristics of multicomponent fuel such as diesel-oxygenate and diesel-paraffin blends under high ambient temperature and atmospheric pressure were investigated in the study. The results of the study may be concluded as follows : In the combustion of diesel fuel droplet with additive of oxygenate and paraffin, the dimensionless droplet size of $(D/D_o)^2$ was linearly decreased with time. A fuel droplet with low boiling temperature additives and in high boiling temperature diesel fuel evaporates and burns faster than usual diesel fuel. This rapid burning may result from so-called "micro-explosion" and its burning intensity varies with the types of additives. The results above may suggest that rapid evaporation of oxygenate additive in the middle stage of combustion can contribute much to combustion improvement of blended fuels. When compared to ordinary diesel fuel, neat oxygenate and paraffin fuels show blue flame during entire combustion which prove smokeless combustion.

Study on Combustion Characteristics of Diesel Fuel and Low Quality Oil Droplet with Additive Oxygenate and Paraffin (함산소계 및 파라핀계 혼합 경유 및 저질유 액적의 연소특성에 관한 연구)

  • Kim Bong-Seock;Ogawa Hideyuki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.552-561
    • /
    • 2006
  • The single droplet combustion characteristics of diesel fuel and low quality oil with additive oxygenate and paraffin under high ambient temperature and atmospheric pressure were investigated in the study. The results of the study may are concluded as follows: In the combustion of diesel fuel and low quality oil droplet with additive of oxygenate and paraffin. the dimensionless droplet size of $(D/Do)^2$ was linearly decreased with time. A fuel droplet with low boiling temperature additives and in high boiling temperature base fuel evaporates and burns faster than usual base fuel. Especially. these trends were remarkably obtained by decreasing boiling point and increasing blending contents of additives in case of oxygenated agents rather than n-paraffin agents. This rapid burning may result from so-called 'micro-explosion' and its burning intensity varies with the types of additives. The results above may suggest that rapid evaporation of oxygenate additive in the middle stage of combustion can contribute much to combustion improvement of blended fuels.

Combustion Characteristics of the Paraffin-Based Hybrid Rocket Fuel (파라핀계 하이브리드 로켓 연료의 연소 특성)

  • Kim, Soo-Jong;Cho, Jung-Tae;Kim, Gi-Hun;Kim, Hak-Chul;Woo, Kyong-Jin;Lee, Jung-Pyo;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.225-228
    • /
    • 2009
  • Combustion characteristics of the paraffin-based hybrid rocket fuel were compared with HDPE fuel. Regression rate of the pure paraffin wax was increased 12.1 times, but characteristic velocity was lower than HDPE. In case of paraffin fuel with 10%wt LDPE, regression rate was lower than pure paraffin wax, but regression rate compare with HDPE was increased 3.5 times and characteristic velocity was increased. According to these results, it was confirmed that blending of polymeric fuel improves combustion efficiency.

  • PDF

Fuel Rich Gas O/F Ratio Characteristics of HDPE and Paraffin Fuel in Low Range of the Oxidizer Mass Flux (저 산화제유속 구간에서의 HDPE 및 Paraffin 연료의 연료농후가스 O/F비 특성)

  • Han, Seongjoo;Ryu, Sunghoon;Kim, Jinkon;Kang, Teagon;Moon, Heejang;Kim, Junhyung;Ko, Seung Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.54-60
    • /
    • 2016
  • Multi-port HDPE and Paraffin firing tests are conducted for hybrid gas generator application of a ducted rocket in the low oxidizer mass flux range. A fuel rich gas of O/F ratio from 0.3 to 0.8, a typical O/F operating range of a ducted rocket gas generator, have been achieved with paraffin fuel implying that the hybrid system can be a potential candidate. It was also found that an almost constant O/F ratio regime exists under $35kg/m^2s$ of the oxidizer mass flux, opening a possibility for the paraffin fuel toward the VFDR gas generator application.

Combustion Characteristics of a Small Hybrid Rocket Using Paraffin-Wax as Fuel (파라핀 연료를 사용하는 소형 하이브리드 로켓의 연소 특성)

  • Kim, Kwon-Ho;Park, Hyun-Chun;Baek, Seung-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.261-264
    • /
    • 2008
  • This study experimentally examines combustion characteristics of a hybrid rocket in which solid paraffin is used as a fuel, while oxidizer is pure oxygen. Especially, the experiment investigates the effects of chamber pressure and configuration of fuel grain. The pressure inside the combustion chamber is varied by changing a flow rate of oxidizer. The regression rate is observed to increase as the chamber pressure does. There also exists the effects of shape of fuel grain on thrust. Characteristic of paraffin hybrid rocket changes with shape of fuel grain. When there is a room near the injector, thrust increases. On the other hand, the room near the nozzle does not contribute to thrust increasement.

  • PDF

Analysis on Ignition Characteristics According to the Chemical Composition of Bio Jet Fuel Synthesized by F-T Process (F-T 공정으로 합성된 바이오항공유의 화학적 조성에 따른 점화특성 분석)

  • Kang, Saetbyeol
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.204-210
    • /
    • 2020
  • In this study, the ignition characteristics of bio jet fuel (Bio-7629, Bio-5172) produced by F-T process and petroleum-based jet fuel (Jet A-1) were compared and analyzed. The ignition delay time of each fuel was measured by means of a combustion research unit (CRU) and the results were explained through an analysis of the properties and composition of the fuel. The ignition delay time of Bio-5172 was the shortest while that of Jet A-1 was the longest because Jet A-1 had the highest surface tension and Bio-5172 had the lowest viscosity in terms of fuel properties that could affect the physical ignition delay time. As a result of the analysis of the constituents' type and ratio, 22.8% aromatic compounds in Jet A-1 could generate benzyl radical, which had low reactivity during the oxidation reaction, affecting the increase of ignition delay time. Both Bio-7629 and Bio-5172 were composed of paraffin only, with the ratio of n-/iso- being 0.06 and 0.80, respectively. The lower the degree of branching is in paraffin, the faster the isomerization of peroxy radical is produced during oxidation, which could determine the propagation rate of the ignition. Therefore, Bio-5172, composed of more n-paraffin, possesses shorter ignition delay time compared with Bio-7629.

Development of Reduced Normal Dodecane Chemical Kinetics (축소 노멀 도데케인 화학반응 메커니즘 개발)

  • Lee, Sangyul;Kim, Gyujin;Min, Kyoungdoug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.37-44
    • /
    • 2013
  • Generally, a reduced chemical mechanism of n-heptane is used as chemical fuel of a 3-D diesel engine simulation because diesel fuel consists of hundreds of chemical components and various chemical classes so that it is very complex and large to use for the calculation. However, the importance of fuel in a 3-D simulation increases because detailed fuel characteristics are the key factor in the recent engine research such as homogeneous charged compression ignition engine. In this study, normal paraffin, iso paraffin and aromatics were selected to represent diesel characteristics and n-dodecane was used as a representative normal paraffin to describe the heavy molecular weight of diesel oil (C10~C20). Reduced kinetics of iso-octane and toluene which are representative species of iso paraffin and aromatics respectively were developed in the previous study. Some species were selected based on the sensitivity analysis and a mechanism was developed based on the general oxidation scheme. The ignition delay times, maximum pressure and temperature of the new reduced n-dodecane chemical mechanisms were well matched to the detailed mechanism data.

A Study on Combustion Characteristics of Paraffin Blended Fuel on Aluminum Particle Size (알루미늄 입자 크기에 따른 파라핀 혼합연료의 연소 특성 연구)

  • Ko, Soohan;Han, Seongjoo;Ryu, Sunghoon;Kim, Jinkon;Moon, Heejang;Kim, Junhyung;Ko, Seungwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.791-796
    • /
    • 2017
  • In this study, the combustion characteristics of paraffin blended fuel on aluminum particle size were investigated. The combustion experiments were carried out using aluminum particles with an average particle size of 100 nm and $8{\mu}m$ and microcrystalline paraffin wax (Sasol 0907). A series of comparison was conducted on the regression rate, the pressure curve and the characteristic velocity of pure paraffin and paraffin blended fuels with aluminum particles. It was found that the micro-sized particles enhance the regression rate as the oxidizer mass flux increased. However, the nano-sized particles decrease the regression rate as the oxidizer mass flux is increased.

  • PDF

Analysis on Ignition Delay Characteristics of Bio Aviation Fuels Manufactured by HEFA Process (HEFA 공정으로 제조된 바이오항공유의 점화지연특성 분석)

  • Kang, Saetbyeol
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.620-627
    • /
    • 2019
  • In this study, ignition delay characteristics of various bio aviation fuels (Bio-ADD, Bio-6308, Bio-7720) produced by HEFA process using different raw materials were compared and analyzed. In order to confirm the feasibility of applying bio aviation fuel to actual system, ignition delay characteristics of petroleum-based aviation fuel (Jet A-1) and blended aviation fuel (50:50, v:v) also analyzed. Ignition delay time of each aviation fuel was measured by using CRU, surface tension measurement and GC/MS and GC/FID analysis were performed to interpret the results. As a result, ignition delay time of Jet A-1 was the longest at all temperature because it contains aromatic compounds about 22.8%. The aromatic compounds can produce benzyl radical which is thermally stable and has low reactivity with oxygen during decomposition process. In the case of bio aviation fuels, ignition delay times were measured similarly because the ratio of n-paraffin/iso-paraffin constituting each aviation fuel is similar (about 0.12) and the composition ratio of cycloparaffin also has no difference. In addition, ignition delay times of blended aviation fuels (50:50, v:v) were measured close to the mean value those of each fuel so it was confirmed that it can be applied without any changing or improving of existing system.