• Title/Summary/Keyword: Parachlorella

Search Result 6, Processing Time 0.024 seconds

Improving Biomass Productivity of Freshwater microalga, Parachlorella sp. by Controlling Gas Supply Rate and Light Intensity in a Bubble Column Photobioreactor (가스공급속도 및 광도조절을 이용한 담수미세조류 Parachlorella sp.의 바이오매스 생산성 향상)

  • Z-Hun Kim;Kyung Jun Yim;Seong-Joo Hong;Huisoo Jang;Hyun-Jin Jang;Suk Min Yun;Seung Hwan Lee;Choul-Gyun Lee;Chang Soo Lee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.41-48
    • /
    • 2023
  • The objective of the present study was to improve the biomass productivity of newly isolated freshwater green microalga Parachlorella sp. This was accomplished by culture conditions optimization, including CO2 concentration, superficial gas velocity, and light intensity, in 0.5 L bubble column photobioreactors. The supplied CO2 concentration and gas velocity varied from 0.032% (air) to 10% and 0.02 m/s - 0.11 m/s, respectively, to evaluate their effects on growth kinetics. Next, to maximize the production rate of Parachlorella sp., a lumostatic operation based on a specific light uptake rate (qe) was applied. From these results, the optimal CO2 concentration in the supplied gas and the gas velocity were determined to be 5% and 0.064 m/s, respectively. For the lumostatic operation at 10.2 µmol/g/s, biomass productivity and photon yield showed significant increases of 83% and 66%, respectively, relative to cultures under constant light intensity. These results indicate that the biomass productivity of Parachlorella sp. can be improved by optimizing gas properties and light control as cell concentrations vary over time.

Enhanced Biomass Productivity of Freshwater microalga, Parachlorella kessleri for Fixation of Atmospheric CO2 Using Optimal Culture Conditions (최적 배양 조건을 이용한 CO2 제거 목적의 담수 미세조류 Parachlorella kessleri의 바이오매스 생산성 향상)

  • Z-Hun Kim;Sun Woo Hong;Jinu Kim;Byungrak Son;Mi-Kyung Kim;Yong Hwan Kim;Jin Hyun Seol;Su-Hwan Cheon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2024
  • This study attempted to improve the growth of the freshwater microalgae, Parachlorella kessleri, through the sequential optimization of culture conditions. This attempt aimed to enhance the microalgae's ability to fixate atmospheric CO2. Culture temperature and light intensity appropriate for microalgal growth were scanned using a high-throughput photobioreactor system. The supplied air flow rate varied from 0.05 to 0.3 vvm, and its effect on the growth rate of P. kessleri was determined. Next, sodium phosphate buffer was added to the culture medium (BG11) to enhance CO2 fixation by increasing the availability of CO2(HCO3-) in the culture medium. The results indicated that optimal culture temperature and light intensity were 20℃-25℃ and 300 μE/m2/s, respectively. Growth rates of P. kessleri under various air flow rates highly depended on the increase of the culture's flow rate and pH which determines CO2 availability. Adding sodium phosphate buffer to BG11 to maintain a constant neutral pH (7.0) improved microalgal growth compared to control conditions (BG11 without sodium phosphate). These results indicate that the CO2 fixation rate in the air could be enhanced via the sequential optimization of microalgal culture conditions.

Investigation on Media Composition for Cultivation of a Newly Isolated Freshwater Microalga Parachlorella sp. to Enhance Fatty Acid Productivity (신규 분리된 담수미세조류 Parachlorella sp.의 지방산 생산성 향상을 위한 배지 조성 연구)

  • Park, Hanwool;Yim, Kyung June;Min, Ji-Ho;Kang, Sung-Mo;Han, Chan-woo;Lee, Chang-Soo;Jung, Ji Young;Hong, Seong-Joo;Lee, Choul-Gyun;Kim, Z-Hun
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.328-336
    • /
    • 2020
  • Parachlorella sp. is an efficient fatty acid producer that can be used in the production of biofuels, feeds, and fertilizers. Microalgae show varying responses to culture conditions, even those within the same species. In this study, growth and fatty acid composition of a newly isolated Parachlorella sp. from the Nakdong river of Korea in different culture media were investigated. The microalga was cultivated in 400 ml bubble column photobioreactors using BG-11, BBM, TAP, and modified TAP (MTAP) media. It was shown that using BBM led to greater fatty acid accumulation (34%), while using TAP medium led to greater biomass productivity (0.34 g/l/day). Composition of the TAP medium was modified to have the N:P ratio of BBM while also varying concentrations of N and P to improve fatty acid productivity. One of the modified TAP media, MTAP-1 (104.8 mgN/l, 135.2 mgP/l, N:P ratio = 0.77), showed the highest fatty acid concentration of 0.69 ± 0.04 g/l, while those from TAP and BBM were 0.48 ± 0.06 g/l and 0.40 ± 0.02 g/l, respectively. The results showed that microalgal fatty acid productivity could be enhanced by changing the N:P ratio and concentrations.

Effects of Nitrogen and Phosphorus Starvation on Growth and Fatty Acid Production in Newly Isolated Two Freshwater Green Microalgae from Nakdonggang River (낙동강 수계에서 분리한 녹조류 2종의 질소와 인의 결핍에 따른 생장 및 지방산 변화 연구)

  • Yim, Kyung June;Park, Hanwool;Lee, Chang Soo;Jo, Bok Yeon;Nam, Seung Won;Lee, Choul-Gyun;Kim, Z-Hun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.81-88
    • /
    • 2019
  • In this study, effects of nitrogen (N) and phosphorus (P) starvation on the cell growth and fatty acid (FA) production of newly isolated freshwater microalgae were investigated. The microalgae were identified as Chlorella sp. and Parachlorella sp. through 18S rRNA sequencing. Optimal culture temperature and light intensity were investigated using a high-throughput photobioreator, and the result was validated in 0.5 L bubble column photobioreactors using BG-11 without NaNO3 and/or K2HPO4. Under nutrient starvation conditions, total FA contents of the microalgae were significantly changed rather than FA composition. Starvation of both N and P was most effective for increasing FA contents in Parachlorella sp (24.4±0.1%) whereas highest FA contents (42.6±1.8%) was achieved when only P was starved in Chlorella sp. among tested conditions. These results suggest an effective strategy for increasing FA production from microalgae using appropriate nutrient starvation.

Supplementation of Indigenous Green Microalga (Parachlorella sp.) to Pre-starter Diet for Broiler Chickens (초기 육계 사료내 토착미세조류(Parachlorella sp.) 첨가에 따른 성장 및 면역반응 변화)

  • An, Su Hyun;Joo, Sang Seok;Lee, Hyo Gun;Kim, Z-Hun;Lee, Chang Soo;Kim, Myunghoo;Kong, Changsu
    • Korean Journal of Poultry Science
    • /
    • v.47 no.1
    • /
    • pp.49-59
    • /
    • 2020
  • The present study determined the effect of dietary cultivated microalgae (Parachlorella sp.) on the growth and immune responses of pre-starter broilers. A total of 320 one-day-old birds (Ross 308) were allocated to 4 treatments with 8 blocks in a randomized complete block design. The four experimental diets consisted of a corn-soybean meal-based control diet, and three diets contained 0.5%, 1.0%, and 1.5% microalgae powder at the expense of cornstarch in the control diet. After feeding the experimental diets for 7 days, the body weight and feed intake of all birds were measured, and 8 birds were randomly selected from each treatment. Peripheral blood mononuclear cells (PBMCs) and serum were harvested for immune profile assessment, including cytokines and cell migration receptors. No differences in growth performance were observed among the treatments. The birds that were fed diets containing graded levels of microalga showed a linear increase in the mRNA expression of cytokine genes in PBMCs, including that of IL2, IL1β, and IL18 (P<0.05). With respect to the chemokine receptor genes in PBMCs, mRNA expression of CCR2, CCR9, and ITGA4 changed quadratically (P<0.05), but that of CCR7 increased linearly (P<0.01). Cytokine protein secretion in blood, including that of IL-1β and IL-6, increased linearly (P<0.01) with an increase in the microalgal content. Overall, the present results show that the indigenous microalgae powder used in this study could stimulate immunity with no detrimental effects on the growth performance of pre-starter broiler chickens.

High-Throughput In Vitro Screening of Changed Algal Community Structure Using the PhotoBiobox

  • Cho, Dae-Hyun;Cho, Kichul;Heo, Jina;Kim, Urim;Lee, Yong Jae;Choi, Dong-Yun;Yoo, Chan;Kim, Hee-Sik;Bae, Seunghee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1785-1791
    • /
    • 2020
  • In a previous study, the sequential optimization and regulation of environmental parameters using the PhotoBiobox were demonstrated with high-throughput screening tests. In this study, we estimated changes in the biovolume-based composition of a polyculture built in vitro and composed of three algal strains: Chlorella sp., Scenedesmus sp., and Parachlorella sp. We performed this work using the PhotoBiobox under different temperatures (10-36℃) and light intensities (50-700 μmol m-2 s-1) in air and in 5% CO2. In 5% CO2, Chlorella sp. exhibited better adaptation to high temperatures than in air conditions. Pearson's correlation analysis showed that the composition of Parachlorella sp. was highly related to temperature whereas Chlorella sp. and Scenedesmus sp. showed negative correlations in both air and 5% CO2. Furthermore, light intensity slightly affected the composition of Scenedesmus sp., whereas no significant effect was observed in other species. Based on these results, it is speculated that temperature is an important factor in influencing changes in algal polyculture community structure (PCS). These results further confirm that the PhotoBiobox is a convenient and available tool for performance of lab-scale experiments on PCS changes. The application of the PhotoBiobox in PCS studies will provide new insight into polyculture-based ecology.