• 제목/요약/키워드: Parabolic Hough Transform

검색결과 2건 처리시간 0.014초

홍채 인식을 위한 포물 허프 변환 기반 눈꺼풀 영역 검출 알고리즘 (Eyelid Detection Algorithm Based on Parabolic Hough Transform for Iris Recognition)

  • 장영균;강병준;박강령
    • 대한전자공학회논문지SP
    • /
    • 제44권1호
    • /
    • pp.94-104
    • /
    • 2007
  • 홍채 인식은 홍채 패턴 정보를 이용하여 사람의 신원을 확인하는 생체 인식 기술이다. 일반적인 홍채 인식 시스템에서 취득된 홍채 영상에는 홍채 패턴 정보를 가리는 눈꺼풀이 포함된다. 이러한 눈꺼풀은 홍채 인식의 성능을 저하시키는 요소이다. 따라서 본 논문에서는 홍채인식의 정확성을 향상시키기 위해 눈꺼풀 검출 알고리즘을 제안한다. 본 연구는 기존의 방법에 비해 다음과 같은 세 가지 차별성과 장점을 가지고 있다. 첫 번째, 눈꺼풀 검출에 문제가 되는 속눈썹과 조명 반사광(specular reflection)을 기존의 방법에 의해 검출한 후에, 선형 보간법(interpolation)을 이용하여 제거하는 방법을 제안함으로써 눈꺼풀 추출의 정확도를 향상하였다. 두 번째, 기존의 알고리즘은 눈꺼풀 후보점을 추출하기 위해 홍채의 넓은 부분을 탐색하므로 영상잡음이나 홍채 패턴 등에 의해 눈꺼풀을 잘못 추출하는 경우가 많았다. 이러한 문제를 해결하기 위하여 본 논문에서는 검출된 홍채의 외곽경계 정보에 의해 초기 눈꺼풀 탐색 영역을 결정하고, 마스크 기법을 이용하여 눈꺼풀 후보점들을 추출함으로써 눈꺼풀 추출 에러를 감소시켰다. 세 번째, 기존의 알고리즘들은 포물선 방정식에 의해 눈꺼풀 영역을 검출하지만, 사용자의 눈의 회전을 고려하지 않았기 때문에 많은 에러가 발생되었다. 따라서 제안하는 알고리즘은 눈의 회전을 고려한 회전된 포물선 방정식을 이용한 허프 변환(Hough transform)을 통해 눈꺼풀을 검출함으로써 이러한 에러 발생을 감소시켰다. CASIA 데이터베이스의 홍채 영상을 사용하여 제안하는 눈꺼풀 검출 알고리즘을 실험한 결과, 위 눈꺼풀의 검출 정확도는 90.82%, 아래 눈꺼풀의 검출 정확도는 96.47%였다.

지능형 자동차의 적응형 제어를 위한 차선인식 (Lane Detection for Adaptive Control of Autonomous Vehicle)

  • 김현구;주영환;이종훈;박용완;정호열
    • 대한임베디드공학회논문지
    • /
    • 제4권4호
    • /
    • pp.180-189
    • /
    • 2009
  • Currently, most automobile companies are interested in research on intelligent autonomous vehicle. They are mainly focused on driver's intelligent assistant and driver replacement. In order to develop an autonomous vehicle, lateral and longitudinal control is necessary. This paper presents a lateral and longitudinal control system for autonomous vehicle that has only mono-vision camera. For lane detection, we present a new lane detection algorithm using clothoid parabolic road model. The proposed algorithm in compared with three other methods such as virtual line method, gradient method and hough transform method, in terms of lane detection ratio. For adaptive control, we apply a vanishing point estimation to fuzzy control. In order to improve handling and stability of the vehicle, the modeling errors between steering angle and predicted vanishing point are controlled to be minimized. So, we established a fuzzy rule of membership functions of inputs (vanishing point and differential vanishing point) and output (steering angle). For simulation, we developed 1/8 size robot (equipped with mono-vision system) of the actual vehicle and tested it in the athletics track of 400 meter. Through the test, we prove that our proposed method outperforms 98 % in terms of detection rate in normal condition. Compared with virtual line method, gradient method and hough transform method, our method also has good performance in the case of clear, fog and rain weather.

  • PDF