• Title/Summary/Keyword: Parabolic

Search Result 1,124, Processing Time 0.024 seconds

Engineering Properties of Concrete using of Coal Gasification Slag as the Fine Aggregates (석탄가스화 용융슬래그를 잔골재로 치환한 콘크리트의 공학적 특성)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.194-201
    • /
    • 2019
  • This study analyzed the properties of concrete depending on the coal gasification slag(CGS) contents in order to examine the applicability of CGS as the fine aggregate for concrete. Experimental results, trended that the slump and slump flow increased with increasing CGS contents, and air contents has decreased. Evaluation index for segregation of normal strength concrete(EISN) is showed was good from CGS 25% when using crushed sand A(CSa) and CGS 50% when using mixed sand(MS). The compressive strength decreased with increasing CGS contents when CSa was used. However, when MS was used, the maximum value was CGS 50% due to parabolic tendency. Depending on fine aggregates type, compared with compressive strength of CSa was about 8% higher than that of MS, and depending on the use or unuse of CGS, more advantageous at higher strength than low strength. As a result of relative performance study on the quality of concrete according to the CGS contents, it is considered that CGS can be positively contributed to enhancement of workability and strength development when mixed with fine aggregate around 25~50%.

The Development of the Lens of the Optical System for High Concentration Solar PV System (고집광 태양광 발전을 위한 광학시스템 렌즈 개발)

  • Ryu, Kwang-Sun;Cha, Won-Ho;Shin, Goo-Hwan;Cho, Hee-Keun;Kim, Young-Sik;Kang, Seong-Won;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.82-88
    • /
    • 2011
  • The artificial increase in the solar intensity incident on solar cells using lenses or mirrors can allow solar cells to generate equivalent power with a lower cost. There are two types of concentration optics for solar energy conversion. One is to use mirrors, and the other is to use Fresnel lenses. The gains that can be achieved with a Fresnel lens or a parabolic mirror are compared. The result showed the gains are comparable and the two configurations were developed competitively. In application areas of Fresnel lenses as solar concentrators, several variations of design were devised and tested. Some PV systems still use commercially available flat Fresnel lenses as concentrators. A convex linear Fresnel lens to improve the concentration ratio and the efficiency is devised and flat linear Fresnel lens in thermal energy collection is utilized. In this study, we designed and optimized flat Fresnel lens and the 'light pipe' to develop 500X concentrated solar PV system. In the process, we compare the transmission efficiencies according to groove types. We performed rigorous ray tracing simulation of the flat Fresnel lenses. The computer aided simulation showed the 'grooves in case' has the better efficiency than that of 'grooves out case'. Based on the ray-trace results we designed and manufactured sample Fresnel lenses. The optical performance were measured and compared with ray-trace results. Finally, the optical efficiency was measured to be above 75%. All the design and manufacturing were performed based on that InGaP/InGaAs/Ge triple junction solar cell is used to convert the photon energy to electrical power. Field test will be made and analyzed in the near future.

A Study on the Aggregation properties of Sodium hyaluronate with Alkanediyl-bis(dimethylalkylammonium bromide) surfactants in aqueous solution (수용액에서 Sodium hyaluronate와 Alkanediyl-bis(dimethylalkylammonium bromide) 계면활성제의 회합성질에 관한 연구)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.1003-1009
    • /
    • 2021
  • A study on the associative properties of sodium hyaluronate (NaHA) and Alkane-bis (dimethylalkylammonium bromide) surfactants in aqueous solution was investigated in relation to the chemical structure of surfactants. As a result of measuring the interfacial tension, a parabolic graph showing the minimum value (cmin) at a specific concentration was shown. Above this minimum concentration the increase in interfacial tension is thought to be related to the formation of aggregates of NaHA chains and dimeric surfactants. The plot of viscosity vs surfactant concentration shows a slight maxium at cmin and a viscosity decrease at high surfactant concentrations. Viscosity nonlinear behavior is related to the size increase due to the complex growth and to the size shrinkage following from the interaction with electrolyte ions and free micelles. The results of surface tension measurements show a broad region of surface tension decrease, indicating the NaHA-surfactant interaction. The increase in surface tension above cmin may be related to the adsorption of clusters, consisting of free NaHA chains and dimeric surfactant. The strong adsorption of surfactant is observed at high concentrations.

Modeling of Material Properties of Fiber-Reinforced High Strength Concrete (섬유 보강 고강도 콘크리트의 재료 특성 모델링)

  • Yang, In-Hwan;Park, Ji-Hun;Choe, Jeong-Seon;Joh, Changbin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.349-356
    • /
    • 2018
  • In this study, material properties of steel fiber reinforced high strength concrete (FRHSC) with the compressive strength of about 120MPa were modeled. Steel fiber content of 1.0%, 1.5%, and 2.0% was considered as experimental variable. First of all, compressive strength tests were carried out to determine compressive characteristics of concrete, and compressive stress-strain curves were modeled. For conventional concrete with moderate compressive strength, the stress-strain curves are in the form of parabolic curves, but in the case of high strength concrete reinforced with steel fiber, the curves increase linearly in the form of the straight line. In addition, to understand the tensile properties of FRHSC, the crack mouth opening displacement (CMOD) test was performed, and the tensile stress-CMOD curve was calculated through inverse analysis. When the steel fiber content increased from 1.0% to 1.5%, there was a significant difference of tensile strength. However, when the amount of steel fiber was increased from 1.5% to 2.0%, there was no significant difference of tensile strength, which might result from the poor dispersion and arrangement of steel fiber in concrete.

An accurate analytical model for the buckling analysis of FG-CNT reinforced composite beams resting on an elastic foundation with arbitrary boundary conditions

  • Aicha Remil;Mohamed-Ouejdi Belarbi;Aicha Bessaim;Mohammed Sid Ahmed Houari;Ahmed Bouamoud;Ahmed Amine Daikh;Abderrahmane Mouffoki;Abdelouahed Tounsi;Amin Hamdi;Mohamed A. Eltaher
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.267-276
    • /
    • 2023
  • The main purpose of the current research is to develop an efficient two variables trigonometric shear deformation beam theory to investigate the buckling behavior of symmetric and non-symmetric functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beam resting on an elastic foundation with various boundary conditions. The proposed theory obviates the use to shear correction factors as it satisfies the parabolic variation of through-thickness shear stress distribution. The composite beam is made of a polymeric matrix reinforced by aligned and distributed single-walled carbon nanotubes (SWCNTs) with different patterns of reinforcement. The material properties of the FG-CNTRC beam are estimated by using the rule of mixture. The governing equilibrium equations are solved by using new analytical solutions based on the Galerkin method. The robustness and accuracy of the proposed analytical model are demonstrated by comparing its results with those available by other researchers in the existing literature. Moreover, a comprehensive parametric study is presented and discussed in detail to show the effects of CNTs volume fraction, distribution patterns of CNTs, boundary conditions, length-to-thickness ratio, and spring constant factors on the buckling response of FG-CNTRC beam. Some new referential results are reported for the first time, which will serve as a benchmark for future research.

Electromechanical Relation of Conductive Materials with High Electrical Resistance and Its Application to the Estimation of In_situ Stress of Structural Tendons (고저항 전도체의 전기기계적 상관작용과 작용응력 예측이 가능한 긴장재의 제안)

  • Zi, Goangseup;Jun, Kiwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.363-370
    • /
    • 2006
  • It is proposed that the electromechanical relation of the conductive materials with high electrical resistance may be used to estimate the current stress of prestressing tendons. To choose the best conductive material to this end, we studied the electromechanical relations of carbon fibers and metalic heat wires experimentally. The strain of those materials was controlled instead of the stress during the experiment. It is found that the relation of carbon fibers can be modelled by a parabolic(or hyperbolic) function in the early stage of deformation. However because the relation is not consistent when it is unloaded and reload, carbon fibers are not suitable for this purpose. Metallic heat wires show a consistent linear relation during loading and unloading in the elastic deformation and are suitable for this purpose. To estimate the electromechanics relation of metallic wires, we developed a simple formula based on the rigid plasticity. We propose a new kind of prestressing tendons whose stress can be monitored. As a side result of this study, we found that the electromechanical relation of carbon fibers without epoxy matrix becomes almost linear after a certain strain.

Development of 3-D Nonlinear Wave Driver Using SPH (SPH을 활용한 3차원 비선형 파랑모형 개발)

  • Cho, Yong Jun;Kim, Gweon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.559-573
    • /
    • 2008
  • In this study, we newly proposed 3-D nonlinear wave driver utilizing the Navier-Stokes Eq. the numerical integration of which is carried out using SPH (Smoothed Particle Hydrodynamics), an internal wave generation with the source function of Gaussian distribution and an energy absorbing layer. For the verification of new 3-D nonlinear wave driver, we numerically simulate the sloshing problem within a parabolic water basin triggered by a Gaussian hump and uniformly inclined water surface by Thacker (1981). It turns out that the qualitative behavior of sloshing caused by relaxing the external force which makes a free surface convex or uniformly inclined is successfully simulated even though phase error is visible and an inundation height shrinks as numerical simulation more proceeds. For the more severe test, we also simulate the nonlinear shoaling and refraction over uniform beach of wedge shape. It is shown that numerically simulated waves are less refracted than the linear counterpart by Hamiltonian ray theory due to nonlinearity, energy dissipation at the bottom and side walls, energy loss induced by breaking, and the hydraulic jump occurring when breaking waves encounter a down-rush by the preceding wave.

Comparative Assessment of the Half-lives of Benfuresate and Oxolinic Acid Estimated from Kinetic Models Under Field Soil Conditions (포장조건에서 Kinetic Models로부터 산출한 Benfuresate 및 Oxolinic Acid의 토양중 반감기 비교평가)

  • Yang, Jae-E.;Park, Dong-Sik;Han, Dae-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.3
    • /
    • pp.302-311
    • /
    • 1995
  • Benfuresate or oxolinic acid, as an experimental pesticide, was applied to the different textural paddy or upland soil respectively under the field condition and the residual concentrations were determined. Six kinetic models were employed to characterize the best-fit kinetic model describing the residual pattern of benfuresate or oxolinic acid and the $t\frac{1}{2}$ estimated from each model was comparatively assessed. All of the six models explained significantly the residual patterns of the pesticides but the empirical models such as PF, EL, and PB were not recommendable for the $t\frac{1}{2}$ estimation. Among theoretical models, the residual patterns were followed in the orders of the second-order(SO)>first-order(FO)>zero-order(ZO) kinetics, judging from the size and significance of coefficient of determination and standard error. However, the multiple FO model, consisting of the fast and slow decomposition steps, was better than the single FO model for the residual pattern and the $r^2$ in this case became similar to that of SO kinetic model. Thus the multiple FO and SO models were represented as the best fit model of the experimental pesticide. The $t\frac{1}{2}$ of benfuresate estimated from the single FO kinetic model in Weolgog and Cheongwon series was 49 and 63 days, respectively, which were 20 and 13% longer than the respective $t\frac{1}{2}$ from the SO kinetic model. The $t\frac{1}{2}$ of oxolinic acid from the FO model in Yonggye and Ihyeon series were 87 and 51% longer than those from the SO kinetic model, respectively. These results demonstrated that the best-fit model representing the residual pattern of a pesticide and the resultant $t\frac{1}{2}$ might be variable with the kinds of pesticides and the environmental conditions. Therefore it is recommended that the half-life of a pesticide be assessed from the best-fit model rather than from the FO kinetic model uniformly.

  • PDF

The Structure of Vegetation in Chamaecyparis obtusa Plantations (편백인공림(人工林)의 식생구조(植生構造)에 관(關)한 연구(硏究))

  • Goo, Gwan Hyo;Lee, Kang Young
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.4
    • /
    • pp.393-407
    • /
    • 1991
  • The vegetation structure within Chamaecyparis obtusa plantation was analyzed for the purpose of applying the effective forestation method for Chmaecyparis obtusa plantation, tending and regeneration in the southern districts of korea. The results were as follows ; 1. The importance percentage was high in the order of Eurya japonica, Rhus verniciflua, Chamaecyparis obtusa, Lindera erythrocarpa, Carpinus laxiflora, Styrax japonica, Viburnum dilatatum, Zanthoxylum piperitum and Smilax china among the vegetation of Chamaecyparis obtusa. Importance percentage of natural seedling of Chamaecyparis obtusa was high in lower story but gradually decreased in middle story. 2. The basal area of upper trees had a negative correlation with the density of natural seedlings in the middle and lower story, and it represents that the basal area of upper trees had some effect on the density of natural seedlings within understories. 3. The rate of the A and B class by Raunkiaer's frequency was higher in the vegetation of middle story than that of lower story. 4. By Morisita's index, the species of Chamaecyparis obtusa, Rhus verniciflua, Lindera erythrocarpa, Smilax china. Callicarpa japonica and Lindera obtusiloba were randomly distributed at lower story, but they were aggregatively distributed at middle story. At all of middle and lower story, Eurya japonica and Viburum dilatatum were randomly distributed, and Carpinus laxiflora, Zanthoxylum piperitum and Picrasma quassioides were aggregatively distributed. 5. The number of appearance species and the value of species diversity in western survey area were more than that of eastern survey area. 6. The value of species diversity at lower story was higher than that of middle story, and it represents that the number of individuals of appearance species was composed more even at lover story than middle story. 7. According to cluster analysis by similarity index, the survey areas were separated from inland and seacoast districts. 8. Judging from each stories ordination analysis by dissimilarity index, the vegetation was separated from lower and middle story, and the vegetation of lower story was more progressed succession stage than that of middle story. 9. In Chamaecyparis obtusa stands, Eurya japonica had a positive correlation with Sorbus alnifolia, Hex macropoda. Ficus erecta and Trachelospermum asiaticum, but it had a negative correlation with Zanthoxylum piperitum, Carpinus laxiflora and Parthenocissus tricuspidata. 10. In estimation of the productivity of Chamaecyparis obtusa stands, the value of SC (Conic surface) and VP (Parabolic volume) for upper trees was 94.5% and 99.63%, respectively and SC and VP of middle story was 5.49% and 0.37%, respectively. In the species of middle story, material productivity was high in order of Eurya japonica. Lindera eryhrocarpa, Rhus verniciflua. Carpinus laxiflora and Styrax japonica.

  • PDF

Studies on the Desertification Combating and Sand Industry Development(IV) - Technology Development for Sanddune Fixation and Sandy Land Conservation in China - (사막화방지(沙漠化防止) 및 방사기술개발(防沙技術開發)에 관한 연구(硏究)(IV) - 중국(中國)의 사구고정(沙丘固定) 및 방사공법분석(防沙工法分析) -)

  • Woo, Bo-Myeong;Lee, Kyung-Joon;Choi, Hyung-Tae;Lee, Sang-Ho;Park, Joo-Won;Wang, Lixian;Zhang, Kebin;Sun, Baoping
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.3
    • /
    • pp.277-294
    • /
    • 2001
  • This study is aimed to analyze and to evaluate the technology development for sanddune fixation and sandy land conservation in China, resulting from the project of "Studies on the desertification combating and sand industry development". There are various types of sanddunes, including shrub-bunch type, dendritic, honey combed lattice, crescentic, parabolic, pyramid, complex and irregular types, domed, and so on. The height distribution ratios of these sanddunes are 13% of less than 5m, 17% of 6~10m, 18% of 11~25m, 14% of 26~50m, 28% of 51~100m, 10% of more than 100m, and so on. In dry land of China, shifting direction of the sanddune is mainly varying with main direction of wind, but types of shifting sanddunes have many differences in accordance with region, topography, size and shape of sanddunes. The main sanddune fixation technologies could be divided into the bio-ecological measures, physical measures and chemical measures. The bio-ecological measures include such vegetation measures as shrub-grasses measures, sandbreaks between sand dunes, sand fixation shelterblets and establishment of farmland shelterbelts, etc. The physical measures include establishment of high-sanddune stabilization walls and low-sanddune stabilization walls, sanddune fixation levees and coverage method with sediment clay, etc. The chemical measures include fixation-materials spraying and synthetical liquid spraying methods, etc. Besides, irrigation and sand settlement measures, shifting sand trapping channel, ditchsand fixation measures, etc. have been effectively applied.

  • PDF