• Title/Summary/Keyword: Paper powder

Search Result 944, Processing Time 0.027 seconds

Characteristic Analysis of Powder Forging Processes for Engine Pistons by Finite Element Analysis (유한요소 해석을 통한 피스톤 분말단조 공정의 특성 분석)

  • Jo, Jin-Rae;Ju, Yeong-Sin;Kim, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2042-2049
    • /
    • 2000
  • This paper is concerned with the comparison of forging characteristics between forward and backward processes, through the three-dimensional finite element simulation, for the aluminum powder forging of engine pistons. Starting from the theoretical formulation of velocity and temperature fields in the sintered preform during the process, we examine the comparative distributions of relative density, effective stress and temperature as well as the variations of total forging load and total volume reduction. Through the comparative results, we find out that the forward method provides better forging characteristics than the backward method.

Development of Multi Piezo Ink-Jet Printing System Using Arbitrarily Waveform Generator (임의 전압파형발생기를 이용한 다중 피에조 잉크젯 3D 프린팅 장비 개발)

  • Kim, Jung Su;Kim, Dong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.781-786
    • /
    • 2015
  • Recently, studies of 3D printing methods have been working in various applications. For example, the powder base method laminates the prints by using a binding or laser sintering method. However, the draw back of this method is that the post process is time consuming and does not allow for parts to be rapidly manufactured. The binding method requires the post process while the time required for the post process is longer than the manufacturing time. This paper proposes a UV curing binding method with an integrated piezo printing head system. The optimization of an arbitrary waveform generation for the control of a UV curable resin droplet was researched, in addition to developed optimized UV curing processes in multi nozzle ink jet heads.

Characteristics of HTS tube fabricated by centrifugal forming process (원심성형법으로 제조한 고온초전도 튜브의 특성 분석)

  • Jang, Gun-Eik;Park, Yong-Min
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.211-215
    • /
    • 2000
  • Bi-2212 HTS tube was fabricated by CFP(Centrifugal Forming Process). Slury was prepared in the mixing ratio of 8:2 between powder and binder and ball-milled for 24 hrs. Slurry was initially charged into the rotating mold with 300${\sim}$450 rpm and heated at the temperature ranges of 840${\sim}$860$^{\circ}$C for partial melting to finally obtain a uniformly textured tube shape. It was observed the plate-like grains with more than 20 ${\mu}$m were well oriented along the rotating axis and the measured T$_c$ was around 67K. In this paper we will discuss and analyze the tube characteristics depending on many different processing parameters such as, powder composition, binder mixing ratio between powder and binder, motor speed, heating temperature and etc.

  • PDF

Preparation and Characteristics of Heat-releasing Sheet Containing AlN(alunimum nitride) Powder (AlN 분말을 이용한 방열 Sheet의 제조와 그 특성)

  • Kim, Sang-Mun;Lee, Seok-Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.431-434
    • /
    • 2012
  • In this paper, heat-releasing sheets made of AlN powder and acryl binder as thermoset were prepared using tape casting method. The crystal structure and morphology, the thermal properties as nonvolatile solid content and thermal conductivity, and the surface resistance of heat-releasing sheet were measured by using X-ray diffractometer, field emission-scanning electron microscopy, thermo gravimetric analyzer and laser flash instrument, and surface resistance meter. It was proved that thermal conductivity is greatly affected by the content of binder in heat-releasing sheet. Superior thermal conductivity above 3.5 W/mK and suface resistance were obtained at heat-releasing sheet with above 90% of AlN powder.

A micromechanical model for ceramic powders (세라믹 분말의 변형거동 해석을 위한 미소역학모델)

  • Ha, Sang-Yul;Park, Tae-Uk;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.668-673
    • /
    • 2008
  • In this paper, we developed a physically-based micromechanical model for inelastic deformation of ceramic powders. The aggregate response of ceramic particles was modeled using the two-surface yield function which considered the shear-induced dilatancy caused by friction, rolling resistance and cohesion between powder particles and consolidation caused by plastic deformation of powder themselves under high compression. The constitutive equations were implemented into the user-subroutine VUMAT of finite element program ABAQUS/Explicit. The material parameters in the constitutive model were identified by calibrating the model to reproduce data from triaxial compression tests and simple compression tests. The density distribution obtained by using the proposed model was in good quantitative agreement with the experimental results of the triaxial compression and cold isostaic compression as well.

  • PDF

Development of Non-Sintered Ceramic Containing Basalt Powder (현무암 석분을 혼입한 비소성 세라믹의 개발)

  • Kim, Gui-Shik;Kim, Jung-Yun;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.93-99
    • /
    • 2014
  • The purpose of this paper is to manufacture the non-sintered ceramic used lime and industrial waste. The used materials were basalt powder sludge, calcium hydroxide(Ca(OH)2) and additives such as calcium stearate and $TiO_2$. The mixing ratios between Ca(OH)2 and sludge were 5:5, 6:4 and 8:2, respectively. The ceramic forms were pressured by 100, 200 and 300 bar and cured in 14% CO2 for 12 days. The behaviors of compressive strength, specific gravity, water absorption and pH of ceramic form were investigated. The results were compressive strength of over 36 MPa, water absorption of over 8.8%, pH value of over 12.3. And these results satisfied GR F 4006 and 4031 standard.

The Effects of Cobalt on Wear and Friction Characteristics of High Speed Steel by Powder Metallurgy (분말고속도공구강의 마찰마모특성에 미치는 Co의 영향)

  • 이한영;배종수;김용진
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.156-163
    • /
    • 1999
  • The mechanical characteristics of the high speed steel by Powder metallurgy Process (PM-HSS) has been reported to improve with several alloying constituents, such as high carbon, vanadium and cobalt. In this paper, sliding wear test has been conducted using a pin-on-disc machine for three PM-HSS which contains 0%, 5% and 12% cobalt respectively, in order to evaluate the effect of cobalt on wear properties of PM-HSS. The results of this study showed that the wear resistance of PM-HSS has been increased by the addition of cobalt on the range of experimental friction velocities. When compared with the effect of addition of cobalt, the wear resistance of PM-HSS with 5% cobalt has been found to be superior to that of PM-HSS with 12% cobalt.

Mechanical Properties of Al-Si Composite Powders produced by Gas Atomization Process

  • Kim Jin-Chun;Wang Li-Fe;Chung In-Sang;Kim Yong-Jin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2004.11a
    • /
    • pp.46-47
    • /
    • 2004
  • The microstructure and mechanical properties of the hypereutectic prealloyed Al-Si powders prepared by the gas atomization process were described in this paper. With increasing the gas pressure of the atomization, the average powder size was decreased from about $145{\mu}m\;to\;80{\mu}m$. The primary eutectic Si particles were uniformly distributed in the Al matrix and their size varied in the range of $8-10{\mu}m$. The high densified specimens with above 96% of the theoretical density were fabricated the hot pressing process. The UTS mechanical properties of VN1 specimens were much higher than that of conventional hypoeutectic Al-Si alloys.

  • PDF

Electoless Ni Plating on Alumina Powder to Application of MCFC Anode Material (MCFC anode 대체 전극 개발을 위한 분말 알루미나 상의 무전해 Ni 도금 연구)

  • Kim, Ki-Hyun;Cho, Kye-Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.3
    • /
    • pp.131-137
    • /
    • 2007
  • The typical MCFC (molten carbonate fuel cell) anode is made of Ni-10%Cr alloy. The work of this paper is focused concerning long life of anode because Ni-10% Cr anode is suffering from sintering and creep behavior during cell operation. Therefore, Ni-coated Alumina powder($20{\mu}m$) was developed by electroless nickel plating. Optimum condition of electroless nickel coation on $20{\mu}m$ alumina is as follows: pH 11.7, temperature $65{\sim}80^{\circ}C$, powder amount $100cm^2/l$. The deposition rate for Ni-electroless plating was as a function of temperature and activation energy was evaluated by Arrhenius Equation thereby activation energy calculated slope of experimental data as 117.6 kJ/mol, frequency factor(A) was $6.28{\times}10^{18}hr^{-1}$, respectively.

Highly Economic and High Quality Zinc-flake Manufacturing by High Kinetic Processing

  • Ren, H.;Benz, H.U.;Chimal V., O.;Corral G., M.S.;Zhang, Y.;Jaramillo V., D.;Zoz, H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.975-976
    • /
    • 2006
  • The present paper is a parameter study of zinc flake production using a Simoloyer CM01 horizontal high energy rotary ball mill. The manufactured flakes have a dimension in thickness (t) < $1{\mu}m$ and diameters (d) 5-100 ${\mu}m$, consequently a ratio d/t up to 200. The flake geometry is mainly controlled by the variation of process parameters such as rotary speed of the rotor, ratio of powder/ball charge, load ratio of the system, process temperature, operating model and the quantity of process control agent (PCA). The Zn flakes were characterized by SEM, tap densitometry, laser diffraction and water coverage measurement.

  • PDF