• Title/Summary/Keyword: Paper deterioration

Search Result 1,284, Processing Time 0.026 seconds

Effects of Color Pigments on the Hanji Deterioration (체색용 안료가 한지의 열화에 미치는 영향)

  • Nam, Hyun-Ju;Cho, Kyoung-Sil;Choi, Tae-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.70-79
    • /
    • 2015
  • This study was carried out to analyze deterioration characteristics of color-pigments painted Hanji to preserve and restore the cultural properties. On the traditional painting technique, glue was used with pigments in various ways for painting, but it eventually caused the deterioration of paintings. Thus, five colors were selected and analyzed for this study for investigating their characteristics of deteriration. Three kinds of glues (Wugyo, Nokgyo, and Togyo) and two kinds of pigments (Chinese and Gilsang) were painted on the Hanji for the accelerated aging test. And then color fastness of pigments and tensile strength of painted Hanji were measured for the estimation of deterioration degree. The results of SEM-EDS showed that Chinese pigments including blue, yellow, green, and red were composed of inorganic substances but the brown was organic substance. Gilsang pigments were composed mainly of Si and Ti ions. Color fastness of the Gilsang pigment blue, yellow, green, and brown were better than those of Chinese. Chinese pigment brown with organic substance showed the worst color fastness. Generally, Chinese pigments painted Hanji showed higher tensile strength than Gilsang in the accelerated aging test. Hanji treated with Chinese pigment and Nokgyo (antler glue) blends and Gilsang pigment and Togyo (rabbit pelt glue) blends showed higher tensile strength than the others. And Andong Hanji showed the highest tensile strength.

Deacidification of Paper by the Gaseous Ethanolamine Treatment (에탄올아민류 가스에 의한 종이의 탈산화처리 효과 분석)

  • 최경화;김영훈;윤병호
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.1
    • /
    • pp.72-78
    • /
    • 2000
  • The major cause of paper deterioration is the acid-catalyzed hydrolysis of the cellulose in paper fibres. The deacidification of paper reduced the rate of this deterioration, and it has been reported to extend the useful life of acidic paper by three to five times. It has been recognized the need for an effective method of deacidifying large quantities of books and documents. T도 review of the current state of deacidification technology has been published recently. The paper points to the immediate need for a cost-effective and reliable method to save the millions of books that prish every year. It was tried to deacidify by the gaseous ethanolamine for solving with the above the problem. Acidic paper was treated with the monoethanolamine, diethanolamine, triehtanolamine. It result, it was found that the rate of deacidification was in caused very little grightness and fold endurances. For solving this problem, it was carried with deacidify by combination treatment of the various gaseous ehtnaloamines. In result, decreasing of brightness and fold endurance is reduced.

  • PDF

Research on Assessment Method of Deterioration Condition for Power Transformer Using Sweep Frequency Response Analyzer (주파수응답분석기를 이용한 전력용 변압기 열화상태 평가방법 연구)

  • Gil, Hyoung-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.30-35
    • /
    • 2013
  • This paper describes the assessment method of deterioration condition for a power transformer using SFRA. Frequency Response Analysis(FRA) is a method to evaluate the mechanical and geometrical integrity of the core and windings within a power transformer by measuring the electrical transfer functions over a wide frequency range. SFRA is sweep frequency response analyzer for power transformer winding diagnosis. The FRA is a comparative method, that evaluates the transformer condition by comparing the obtained set of FRA results to reference results on the same, or a similar, unit. FRA techniques were widely used and much more sensitive than the traditional and internationally accepted method of impedance measurements, but that work was required on standardization and interpretation. In order to analyze the deterioration condition for power transformer, overvoltage test and mechanical distortion test were carried out. The deterioration condition for power transformer was evaluated by SFRA. It is intended to present the elemental technology of assessment method for power transformer using SFRA.

An experimental study on the effect of deterioration of drainage system on tunnel structures (배수시스템 수리기능저하가 터널구조물에 미치는 영향에 대한 실험적 연구)

  • Kwon, Oh-Yeob;Shin, Jong-Ho;Yang, Yu-Hong;Joo, Eun-Jung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.970-979
    • /
    • 2006
  • Construction of underground structure requires higher standard of planning and design specifications than in surface construction. However, high construction cost and difficult working environment limit design level and construction quality. One of the most sensitive factors to be considered are infiltration and external pore-water pressures. Development of pore-water pressure may accelerate leakage and cause deterioration of the lining. In this paper, the development of pore-water pressure and its potential effect on the linings are investigated using physical model tests. A simple physical equipment model with well-defined hydraulic boundary conditions was devised. The deterioration procedure was simulated by controlling both the permeability of filters and flowrate. Development of pore-water pressure was monitored on the lining using pore pressure measurement cells. Test results identified the mechanim of pore-water pressure development on the tunnel lining which is the effect of deterioration of drainage system. The laboratory tests were simulated using coupled numerical method, and shown that the deterioration mechanism can be reproduced using coupled numerical modelling method.

  • PDF

A Study on the Rebuilding-Time in terms of the Apartment Housing - Focused on the Deterioration Analysis with the Maintenance Cost - (공동주택 재건축시기 산정연구(II) - 유지관리 비용을 이용한 열화도 분석을 중심으로 -)

  • Lee, Kang-Hee;Park, Guen-Soo;Chae, Chang-U
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.13-18
    • /
    • 2011
  • Building is different from the general commodities and needs to maintain the function and performance to get the living condition. Building deterioration occurs naturally with time elapse. Deterioration reasons are various. These are physical, functional, social and second physical aspect. Building would inevitably be deteriorated and need to repair various building part and materials. It gets to arrive at repair or rebuilding time until any management activity is meaningless. It is important to decide the rebuilding time in a management cost. In this paper, it aimed at analyzing the management annual cost and provide a rebuilding time of a apartment housing with a deterioration curve model. Results of this study are as follows : Most of the building has started to deteriorate in 40 years when the performance of building downgrades to 20%. After it past about 40 years, the deterioration rate is faster than the earlier 40 years. Fourth, the rebuilding time of an apartment housing is recommended about 45 years if the building service life has 60 years.

A Study on the Combined Deterioration of Concrete subjected to Freezing-Thawing and Chloride Attack (동해와 염해를 동시에 받는 콘크리트의 복합열화에 관한 연구)

  • Kim Eun-Kyum;Choi Sang-Deok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.225-228
    • /
    • 2005
  • This paper was accomplished for analyzing the reason of the above deterioration happened on the deck of concrete bridge. The bridge was constructed at 660m above the sea level having more freezing and snowing days. Therefore, it is placed on the particular condition sprinkling $CaCl_2$ enough for keeping up with moderate traffic condition. When it is considered to the former condition, the bridge can be assumed to potentialities for combined deterioration with freezing-thawing under sprinkling deicing chemical. Core specimens were gathered from the concrete deck for clearing the reason of the above deterioration exactly, and it is used for various tests for measuring the compressive strength, elastic modulus, content of $Cl^-$, freezing-thawing at the fresh and salt water. As a result of freezing-thawing test, the specimen at the fresh water has over 90$\%$ of durability factor, but another specimen at 1$\%$ of salt water has 0$\%$ of durability factor at 140 cycles of the freezing-thawing. The result means that frost damage is sccelerated at the salt water. Therefore, the deterioration of the concrete deck is estimated to be occured by combined effects of freezing-thawing and chloride ion attack.

  • PDF

Evaluation of Railway Line Segment Deterioration Using AHP and DEA (AHP와 DEA를 활용한 철도선로구간 노후도 평가)

  • Kim, Seongho;Choi, Chan-Yong;Na, Hee-Seung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.2
    • /
    • pp.117-121
    • /
    • 2013
  • Railway line segment deterioration can be affected by rail tracks, subgrades, bridges, tunnels, and line shapes. In this paper, an evaluation method is presented for the railway line segment deterioration using the analytic hierarchy process (AHP) and data envelopment analysis (DEA). The importance weights can be assessed systematically for component facilities from numerous experts using AHP. The importance weights provided by experts may differ according to each expert; however, the DEA enables the evaluation of railway line segment deterioration that reflects the variety of expert opinions using these importance weights.

Study of Deterioration Phenomenon and Causes in Pavement of Ramp Area (도로 램프구간에 대한 파손형태 및 원인에 관한 연구)

  • Hwang, Sung-Do;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.85-90
    • /
    • 2016
  • PURPOSES : The objective of this paper is to understand the deterioration phenomenon and causes in the pavement of a ramp area. METHODS : Ramp areas need to be sloped because of the centrifugal force, which depends on the vehicle speed and grade of the ramp area. As a result, vertical and horizontal forces are applied on the pavement surface of the ramp area. Furthermore, the horizontal force depends on the vehicle speed and grade of the ramp area. In order to analyze the pavement structure of a ramp area, a multi-layered elastic analysis program was used to evaluate the weakest link of fatigue cracking deterioration, according to the simultaneously applied vertical and horizontal forces. RESULTS : From case studies related to the bonding conditions between the surface and base layer in a ramp area, it was found that the partially bonded cases resulted in a critical potential of fatigue cracking deterioration, in a comparison of 50%, 70%, and fully bonded cases. CONCLUSIONS : According to the results of the case studies, the pavement structure system should be reinforced by upgrading the material or increasing the thickness compared to the general pavement areas, in order to provide a performance life similar to the mainline pavements in the ramp areas.

Effect of Temperature on the Deterioration of Graphite-Based Negative Electrodes during the Prolonged Cycling of Li-ion Batteries

  • Yang, Jin Hyeok;Hwang, Seong Ju;Chun, Seung Kyu;Kim, Ki Jae
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.208-212
    • /
    • 2022
  • In this paper, we report the effects of temperature on the deterioration of graphite-based negative electrodes during the longterm cycling of lithium-ion batteries (LIBs). After cycling 75 Ah pouch-type LIB full cells at temperatures of 45℃ (45-Cell) and 25℃ (25-Cell) until their end of life, we expected to observe changes in the negative electrode according to the temperature. The thickness of the negative electrode of the cell was greater after cycling; that of the electrode of 45-Cell (144 ㎛) was greater than that of the electrode of 25-Cell (109 ㎛). Cross-sectional scanning electron microscopy analysis confirmed that by-products caused this increase in the thickness of the negative electrode. The by-products that formed on the surface of the negative electrode during cycling increased the surface resistance and decreased the electrical conductivity. Voltage profiles showed that the negative electrode of 25-Cell exhibited an 84.7% retention of the initial capacity, whereas that of 45-Cell showed only a 70.3% retention. The results of this study are expected to be relevant to future analyses of the deterioration characteristics of the negative electrode and battery deterioration mechanisms, and are also expected to provide basic data for advanced battery design.

Study of Deterioration Improvement of Power Fuse (전력퓨즈의 열화현상 개선에 관한 연구)

  • Song, Jae-Ki;Kim, Hwan-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3827-3831
    • /
    • 2014
  • This paper aims to solve the problem deterioration of power fuses. The deterioration of a power fuse is a cause of failure misoperation by a normal current flowing reduplicatively to fuse the element. An extension survey of a load feature rerating power fuse examined the power fuse deterioration removal, the cause of the deterioration of the power fuse, the front-after, and the thermal variation of the inside transformer room electric power equipment. The transformer showed an average improvement of $6[^{\circ}C]$. The temperature of the electrical line showed $7{\sim}8[^{\circ}C]$ improvement. The static condenser and direct reactor was $2{\sim}3[^{\circ}C]$ high-state maintenance the temperature and equipment syntonization relationship. In the subject of study $0.5{\sim}1.0[^{\circ}C]$ stabilizing three phase power fuse temperature differential was. Suggestion in the transformer room environment power equipment between the cause temperature happen elimination to deterioration of power fuse and temperature rise control.