• Title/Summary/Keyword: Paper Heat exchanger

Search Result 480, Processing Time 0.032 seconds

Performance Improvement of Cured-In-Place-Pipe(CIPP) Process by Boiler Waste Heat Recovery (보일러 폐열 회수를 통한 현장경화관(CIPP)공정 성능 향상)

  • Kim, Young-Jin;Jung, Chung Woo;Lee, Yoon Jung;Kim, Sung Soo;Kang, Yong Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.164-167
    • /
    • 2013
  • The objectives of this paper are to study the performance improvement of waste heat recovery from a boiler, by the Cured-In-Place-Pipe(CIPP) process. The conventional apparatus does not utilize the waste heat from the boiler during the process. However, the present apparatus recovers the waste heat from the boiler. When the new apparatus is used, the bending strength and modulus of the CIPP becomes double, and is over 45% stronger, than the required conditions, respectively. It is found that the energy consumption reduces to 50%, by recovering the waste heat from the boiler, and the oil consumption amount reduces to 1/3, compared to the conventional apparatus.

Flow and Heat Transfer Characteristics of $CO_2$/Oil Mixtures in a Circular Tube

  • Kang, Byung-Ha;Lim, Dong-Seop
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.4
    • /
    • pp.117-123
    • /
    • 2008
  • The present study is directed at flow and heat transfer of $CO_2$ and oil mixtures in a circular tube. PAG and POE oils are considered in this study. Flow characteristics of $CO_2$ and oil mixtures have been investigated by flow visualization. Pressure drop has been measured in the range of operating mass flow rate from 0.1 to 0.4 kg/min in a circular tube. Heat transfer characteristics of $CO_2$/oil mixtures have been investigated using a counterflow heat exchanger. In case of pure liquid $CO_2$ as well as $CO_2$ and POE mixtures, flow are seen to be uniform so that $CO_2$ and POE oil are still miscible even at flowing state. However, it is found that $CO_2$ and PAG are not miscible. Pressure drop of $CO_2$/PAG mixtures are much higher than that of $CO_2$/POE mixtures as well as pure $CO_2$ at a fixed mass flow rate. As the concentration of POE oil is increased from 0 to 5 wt%, pressure drop is increased. However, heat transfer rate and heat transfer coefficient of $CO_2$/POE mixtures are much higher than that of $CO_2$/PAG mixtures. The f-factor correlation and Nusselt number correlation for $CO_2$/POE oil mixtures are suggested in this paper.

Temperature Characteristic of Rotor of HTS Synchronous Machine cooled by Solid Nitrogen (고체질소 냉각 고온초전토 동기기용 회전자의 온도특성)

  • Jo, Young-Sik;Hong, Jung-Pyo;Lee, Ju;Sim, Ki-Deck;Sohn, Myoung-Hwan;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.95-97
    • /
    • 2001
  • This paper deals with cryogen, which is used solid nitrogen to keep the operating temperature of High Temperature Superconducting (HTS) synchronous machine. To make the solid nitrogen of liquid nitrogen, liquid helium (LHe) passes into and cools the heat exchanger to its own temperature. Two types of heat exchangers are designed and manufactured to make the solid nitrogen, and temperature characteristics of those compare with each other. The rotor cooled by latent heat of solid nitrogen and it is kept under 40K during 2 hours and 30 minutes without LHe.

  • PDF

An Experimental Study on the Temperature Variation in Heat Storage Zone in the Honeycomb-covered Small Saltless Solar Pond (벌집형 소형 태양열 저장수조의 열저장층 내의 온도변화에 관한 실험적 연구)

  • Pak, Ee-Tong;Hwang, Sung-Il;Hahn, Dong-Kyun
    • Solar Energy
    • /
    • v.9 no.1
    • /
    • pp.30-35
    • /
    • 1989
  • This paper dealt with an experiments on temperature vairation in the heat storage zone due to change of vertical location (height) of sink diffuser and flow extraction in small saltless solar pond ($0.5{\times}0.5{\times}1.0M$), and the honeycomb device for this experimental purpose consisted of one-tired, sealed, and air filled by honeycomb panels. As results of experiments, 1) The storage zone was formed under lower region below the honeycomb device. 2) The higher vertical location of sink diffuser was placed, the more mixing phenomenon increased in the pond at steady flow extraction. 3) The more flow extraction increased, the more mixing phenomenon decreased at constant heat exchanger and variable flow extraction.

  • PDF

A Study on the fin efficiency of continuous fin - tube heat exchanger, -In the case of sensible heat transfer- (섹터법을 이용한 연속휜-튜브형 열교환기의 휜효율에 관한 연구, -현열 열전달의 경우-)

  • Jung, Hyeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.76-81
    • /
    • 1996
  • In this paper, a calculation method for fin efficiency of continuous fin is introduced. The continuous fin of in-line and staggered arrangement was divided into many sectors and fin efficiencies of each sectors were calculated by assuming that each sectors be the circular fins. To get the converged fin efficiency which is averaged by the each areas, the number of sectors was increased. The results were compared with equivalnet method by varying the aspect ratios in both cases of in-line and staggered tube arrangement and showed some differences of fin efficiencies.

  • PDF

Louvered Fin Heat Exchanger : Optimal Design and Numerical Investigation of Heat and Flow Characteristics (루버휜 최적 설계 및 최적 모델의 열유동 특성 분석)

  • Ryu, Kijung;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.654-659
    • /
    • 2013
  • This paper presents a numerical optimization of louvered fins to enhance the JF factor in terms of the design parameters, including the fin pitch, the number of louvers, the louver angle, the fin thickness, and the re-direction louver length. We carried out a parametric study to select the three most important parameters affecting the JF factor, which were the fin pitch, number of louvers, and the louver angle. We optimally designed the louvered fin by using 3rd-order full factorial design, the kriging method, and a micro genetic algorithm. Consequently, the JF factor of the optimum model increased by 16% compared to that of the base model. Moreover, the optimum model reduced the pressure drop by 17% with a comparable heat transfer rate.

Analysis of high efficiency natural gas liquefaction cycle with mixed refrigerant (고효율 혼합 냉매 천연 가스 액화 공정에 대한 고찰)

  • Baek, Seung-Whan;Hwang, Gyu-Wan;Jeong, Sang-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.181-185
    • /
    • 2008
  • The new concept for liquefaction of natural gas has been designed and simulated in this paper. Conventional liquefaction cycles are usually composed with Joule-Thomson valves at lower temperature refrigerant cycle. The new concept of natural gas liquefaction is discussed. The main difference with conventional liquefaction process is the presence of the turbine at low temperature of MR (mixed refrigerant) cycle. The turbine acts as expander but also as an energy generator. This generated energy is provided to the compressor which consumes energy to pressurize refrigerants. The composition of the mixed refrigerant is investigated in this study. Components of the refrigerant are methane, propane and nitrogen. Composition for new process is traced with Aspen HYSYS software. LNG heat exchangers are analyzed for the new process. Heating and cooling curves in heat exchangers were also analyzed.

  • PDF

Image Reconstruction of Dispersed Phases in DCHXs

  • Wongee Chun;Kim, Min-Chan;Lee, Heon-Ju;Lee, Yoon-Joon;Kang, Yong-Heack;Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.10 no.2
    • /
    • pp.83-89
    • /
    • 2001
  • This paper studies the possibility of applying the EIT(Electrical Impedance Tomography) technique for investigating the formation and movement of dispersed phase droplets as they stream through a Direct Contact Heat Exchanger(DCHX). In most direct contact liquid-liquid heat exchangers, oil or hydro-carbon with a density different (lighter or heavier) from water is normally used as dispersed working fluid. The main difficulty that arises with arrangement lies in the extraction of performance parameters and visualization of dispersed phase fluids if required. In order to delve into these problems, this paper introduces a number of cases regarding the operation and principle of DCHXs and investigates the possibility of applying the EIT technique whose results are given for several examples.

  • PDF

Cooling Performance of Cooling Tower-Assisted Ground-Coupled Heat Pump (GCHP) System Applied in Hospital Building (병원 건물에 설치된 냉각탑 병용 지열 히트펌프 시스템의 냉방 성능)

  • Sohn, Byonghu;Lee, Doo-Young;Min, Kyung-Chon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.1
    • /
    • pp.7-16
    • /
    • 2016
  • This paper presents the measurement and analysis results for the cooling performance of ground-coupled heat pump (GCHP) system using a cooling tower as a supplemental heat rejector. In order to demonstrate the performance of the hybrid approach, we installed the monitoring equipments including sensors for measuring temperature and power consumption, and measured operation parameters from May 1 to October 30, 2014. The results showed that the entering source temperature of brine returning from the ground heat exchanger was in a range of design target temperature. Leaving load temperatures to building showed an average value of $11.4^{\circ}C$ for cooling season. From the analysis, the daily performance factor (PF) of geothermal heat pumps ranged from 4.4 to 5.2, while the daily PF of hybrid GCHP system varied from 3.0 to 4.0 over the entire cooling season.