• 제목/요약/키워드: Paper Friction Material

검색결과 342건 처리시간 0.026초

FRICTION CHARACTERISTICS OF A PAPER-BASED FRICTION MATERIAL

  • Gao, H.;Barber, G.-C.;Chu, H.
    • International Journal of Automotive Technology
    • /
    • 제3권4호
    • /
    • pp.171-176
    • /
    • 2002
  • A bench test set-up is employed to simulate the friction characteristics of a paper-based friction material operating against a steel plate. Dry friction tests are run as well as tests with transmission fluids. Glazed friction material produces a negative coefficient of friction versus sliding velocity (f-v) curve for both dry friction and lubrication with transmission fluids. At low sliding speeds, the coefficient of friction when operating in transmission fluids for glazed friction materials is greater than that under dry friction. An appreciable negative f-v slope occurs at low sliding speeds for glazed friction materials when running with the transmission fluid. The friction material after running in produces a constant f-v curve under dry friction and a negative slope when lubricated with transmission fluid. At low sliding speeds, the coefficient of friction of the run-in friction material is lower than that of the glazed wet material. On the other hand, the run-in friction material has a larger friction coefficient than does the glazed friction material at higher sliding speeds.

자동차용 클러치 마찰재의 미끄럼마찰마모특성 해석(제2보 마찰특성) (Analysis of Sliding Friction and Wear Properties of Clutch Facing for Automobile (Part 2))

  • 이한영;김근영;허만대
    • Tribology and Lubricants
    • /
    • 제21권2호
    • /
    • pp.77-82
    • /
    • 2005
  • In previous paper, the wear properties of clutch facing materials with two different copper amounts against fly-wheel materials used in the clutch system were investigated by sliding wear tests at different applied loads and speeds. This paper have been aimed to evaluate the friction properties for clutch facing materials at the same test conditions as the previous paper. The experimental results indicated that the friction properties of clutch facing materials are influenced from the thermal conductivities of the clutch facing material and the counter material. The clutch facing material with the lower thermal conductivity and the fly-wheel material with the higher thermal conductivity showed the low and stable friction coefficient in the range of high sliding speed. This appears to be due to the formation of a film on the surface of the fly-wheel material.

Study on Tribology Characteristics of Friction Material Based on Tribo-Systems

  • Yang, Zhao-Jian;Fang Ren;Kim, Seock-Sam
    • KSTLE International Journal
    • /
    • 제4권1호
    • /
    • pp.27-30
    • /
    • 2003
  • The basic principles of tribo-systems and study method based on tribe-systems are introduced in the paper, Based on the viewpoint of tribe-systems, the experiment on tribology characteristics of friction lining material in multi-rope friction hoist is carried out. The research result shows: tribology characteristics of friction material are not its inherent characteristic but system characteristics of the tribo-systems, the“sliding-rope”of multi-rope friction hoist can be divided into“safety sliding-rope”and“fault sliding-rope”, study on friction material only based on characteristic of system where friction material exists possesses practical significance.

흑연과 지르콘의 상대적 함량에 따른 마찰재의 고온 마찰 및 마모특성 (High temperature Friction and Wear of Friction Material; The Effect of the Relative Amount of Graphite and Zirconium Silicate (ZrSiO$_4$))

  • 김성진;장호
    • Tribology and Lubricants
    • /
    • 제16권5호
    • /
    • pp.365-372
    • /
    • 2000
  • Tribological behavior of novolac resin-based friction materials with three different relative amounts of graphite and zirconium silicate was investigated by using a pad-on-disk type friction tester. The goal of this paper is to examine the effects of the relative amount of a lubricant and an abrasive in the automotive friction material on friction and wear characteristics at elevated temperature. Friction and wear of friction materials were affected by the existence of transfer film(3$\^$rd/ body layer) at friction interface and the composition of friction material, especially lubricant amount. The friction material with higher content of graphite indicated homogenized and durable transfer film, and resulted in stable friction coefficient regardless of the increase in friction heat. The experimental result also showed that the higher concentration of ZrSiO$_4$ in friction material aggravated friction stability and wear resistance due to the higher friction heat generated at fiction interface during high temperature friction test.

친환경 법규 대응을 위한 복합재 브레이크의 Cu Free 마찰재 개발에 관한 연구 (A Study on the Development of Cu Free Friction Material of Composite Brake to Response Eco-friendly Regulation)

  • 심재훈;이중희;신웅희;임동원;현은재
    • 자동차안전학회지
    • /
    • 제14권2호
    • /
    • pp.90-95
    • /
    • 2022
  • Composite material is widely used in the automotive industries because it has excellent mechanical properties and is possible to reduce weight due to the low density. However, there is a new obstacle to meet environment regulation like Cu less or Cu free regulation for the friction material. Although it is strongly demanded, there are few research results about that unfortunately. Unless this problem is not solved properly, it is impossible to apply composite brake system to vehicle. In this paper, a new eco-friendly friction material for composite brake system is represented to respond these regulations. To do this, friction characteristics between existing low steel friction material and new eco-friendly friction material are verified to secure performances for brake system such as effect characteristic, fade characteristic and wear characteristic. And composite brake gets the equivalent or better performance compared to a low steel friction material. Finally, this result contributes to the study of major principles for the development of eco-friendly friction material in the future.

CMP 결과에 영향을 미치는 마찰 특성에 관한 연구 (Characteristics of Friction Affecting CMP Results)

  • 박범영;이현섭;김형재;서헌덕;김구연;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제17권10호
    • /
    • pp.1041-1048
    • /
    • 2004
  • Chemical mechanical polishing (CMP) process was studied in terms of tribology in this paper. CMP performed by the down force and the relative motion of pad and wafer with slurry is typically tribological system composed of friction, wear and lubrication. The piezoelectric quartz sensor for friction force measurement was installed and the friction force was detected during CMP process. Various friction signals were attained and analyzed with the kind of pad, abrasive and abrasive concentration. As a result of experiment, the lubrication regime is classified with ηv/p(η, v and p; the viscosity, relative velocity and pressure). The characteristics of friction and material removal mechanism is also different as a function of the kind of abrasive and the abrasive concentration in slurry. Especially, the material removal per unit distance is directly proportional to the friction force and the non~uniformity has relation to the coefficient of friction.

하중 및 온도에 따른 습식 클러치 마찰재의 트라이볼로지 특성 (Effect of Normal Force and Temperature on Tribological Properties of Wet Clutch Friction Material)

  • 박혜선;정구현
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.30-36
    • /
    • 2019
  • The tribological properties of paper-based friction materials are crucial to the performance of a wet clutch system. In this work, the friction and wear characteristics of a paper-based friction material in boundary lubrication state was experimentally investigated using a pin-on-reciprocating tribotester under various normal forces and temperatures. It was found that the wear rate of the friction material increased from $5.8{\times}10^{-6}mm^3/N/cycle$ to $5.5{\times}10^{-5}mm^3/N/cycle$ after 1,700 cycles of testing at $80^{\circ}C$ as normal force increased from 2 N to 7 N. The friction coefficient was also found to increase from 0.135 to 0.155 with increasing normal force from 2 N to 7 N. The increase in contact pressure with increasing normal force may be responsible for these results. In addition, as temperature increased from $20^{\circ}C$ to $80^{\circ}C$, the wear rate of the friction materials increased from $2.0{\times}10^{-5}mm^3/N/cycle$ to $3.6{\times}10^{-5}mm^3/N/cycle$ while the friction coefficient decreased from 0.163 to 0.146. This result may be associated with the decrease in the hardness of friction materials with increasing temperature. Furthermore, plastic deformation on the friction materials was mainly observed after the test. The outcome of this work may be useful to gain a better understanding of the tribological properties of friction materials, and therefore can contribute to the development of friction materials with enhanced performance for wet clutch systems.

원자력 발전소용 이종재 마찰용접의 최적화와 AE에 의한 실시간 평가에 관한 연구 (Study on Optimization of Dissimilar Friction Welding of Nuclear Power Plant Materials and Its Real Time AE Evaluation)

  • 권상우;오세규;유인종;황성필;공유식
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.42-46
    • /
    • 2000
  • In this paper, joints of Cu-1Cr-0.1Zr alloy to STS316L were performed by friction welding method. Cu-1Cr-0.1Zr alloy is attractive candidate as nuclear power plant material and exibit the best combination of high sts good electrical and thermal conductivity of any copper alloy examined. The stainless steel is a structural material who alloy acts as a heat sink material for the surface heat flux in the first wall. So, in this paper, not only the develop optimizing of friction welding with more reliability and more applicabililty but also the development of in-process rear quility(such as strength and toughness) evaluation technique by acoustic emission for friction welding of such nuclear component of Cu-1Cr-0.1Zr alloy to STS316L steel were performed.

  • PDF

저마찰.고속 공압실린더의 마찰특성 연구 (An Experimental Study on the Frication Forces in Low Friction and High Speed Pneumatic Cylinders)

  • 김동수;김광영;최병오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.476-479
    • /
    • 1997
  • A Knowledge of friction force in pneumatic cylinders makes it possible to improve cylinder description during simulation and to asses performance under changing operating conditions more accurately. Such knowledge is particularly useful, for example, when modeling continuous pneumatic positioning systems or predicting the operating conditions under which stick slip may occur, as well as in establishing preventive maintenance procedures for pneumatic cylinders. Friction force depends on a number of factors, including operating pressure, seal running speed on the cylinder barrel and rod, barrel material and surface roughness, seal dimensions and profile, seal material, lubrication conditions, cylinder distortion during assembly, and the operating temperature of cylinder components. This paper shows a system for measuring the friction force caused by a seal used in pneumatic cylinders. Results of experimental tests show that seal friction forces for grease lubricated service are clearly dependent on speed and pressure and are les sensitivity to other parameter. i.e., barrel material and roughness, seal material, and profile.

  • PDF

CMP에서의 스틱-슬립 마찰특성에 관한 연구 (A Study on the Characteristics of Stick-slip Friction in CMP)

  • 이현섭;박범영;서헌덕;박기현;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제18권4호
    • /
    • pp.313-320
    • /
    • 2005
  • Stick-slip friction is one of the material removal mechanisms in tribology. It occurs when the static friction force is larger than the dynamic friction force, and make the friction curve fluctuated. In the friction monitoring of chemical mechanical polishing(CMP), the friction force also vibrates just as stick-slip friction. In this paper, an attempt to show the similarity between stick-slip friction and the friction of CMP was conducted. The prepared hard pa(IC1000/Suba400 stacked/sup TM/) and soft pad(Suba400/sup TM/) were tested with SiO₂ slurry. The friction force was measured by piezoelectric sensor. According to this experiment, it was shown that as the head and table velocity became faster, the stick-slip time shortened because of the change of real contact area. And, the gradient of stick-slip period as a function of head and table speed in soft pad was more precipitous than that of hard one. From these results, it seems that the fluctuating friction force in CMP is stick-slip friction caused by viscoelastic behavior of the pad and the change of real contact area.