• Title/Summary/Keyword: Pantoea

Search Result 99, Processing Time 0.029 seconds

Isolation and Characterization of Phosphate Solubilizing Bacteria Pantoea Species as a Plant Growth Promoting Rhizobacteria (식물 생장 촉진 활성을 가진 인산분해 미생물 Pantoea 종의 분리 및 특성 규명)

  • Yun, Chang Yeon;Cheong, Yong Hwa
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1163-1168
    • /
    • 2016
  • Plant growth-promoting rhizobacteria (PGPR) have gained worldwide importance and acceptance due to their agricultural benefits. These microorganisms are potential tools for sustainable agriculture, with effects on plant growth, biofertilization, induced systemic resistance, and biocontrol of plant pathogens. In this study, four different Pantoea species were isolated from field soil, and their plant growth-promoting characteristics were studied. Based on 16S rDNA gene sequencing analyses, the se were grouped into Pantoea ananatis, Pantoea citrea, Pantoea dispersa, Pantoea vagans and named as Pa1, Pc1, Pd1, Pv1, respectively. All of these strains have their ability for solubilization of insoluble phosphate depending on pH decrease at the range around pH 5 at 1days after inoculation and production of plant hormone indole acetic acid (IAA) with 85.3±16.3 μg/ml of Pa1, 183.9±16.8 μg/ml of Pc1, 28.8±17.3 μg/ml of Pd1 and 114.1±16.5 μg/ml of Pv1, respectively. Pa1, Pc1 and Pd1 also have high activity for production of gibberellin (GA3) hormone with 331.1±19.2 μg/ml of Pa1, 288.5±16.8 μg/ml of Pc1, 309.2±18.2 μg/ml of Pd1, but Pv1 does not. Furthermore, all these species have significantly promoted the growth of the lettuce seedling plants at the range around 32~37% for fresh weight and 10~15% for shoot length enhancement, so that these microbe could be used as a potential bio-fertilizer agents.

The Bacterial Gall of Wistaria floribunda Caused by Pantoea agglomerans pv, milletiae (Pantoea agglomerans pv. milletiae에 의한 등나무 혹병)

  • 김종완;임진우
    • Research in Plant Disease
    • /
    • v.7 no.3
    • /
    • pp.145-149
    • /
    • 2001
  • A pathogenic bacterium was isolated from galls on Wistaria floibunda at Jinryang of Kyungsan, Kyungbuk, Korea in May, 2000. This bacterium was cultured and tested for pathogenicity on the host. Also its morphological and physiological characteristics were examined. Inoculation with the bacterium isolated from the gall caused the same symptoms as those under natural conditions. On the basis of bacteriological characteristics and pathogenecity on the host plant of the organism, the causal bacterium was identified as Pantoea agglomerans pv. milletiae. This is the first report of this bacterium to occur on W. floribunda plant in Korea. Therefore we proposed to name the disease as "bacterial gall of Wistaria floribunda" by P. agglomerans pv. milletiae.milletiae.

  • PDF

Isolation and Degradation Activity of a TBTCl (Tributyltin Chloride) Resistant Bacteriain Gwangyang Bay (광양만에서 TBTCl (Tributyltin Chloride) 내성세균의 분리 및 분해활성)

  • Jeong, Seong-Yun;Son, Hong-Joo;Jeoung, Nam-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.424-431
    • /
    • 2011
  • BACKGROUND: Tributyltin chloride is among the most toxic compounds known for aquatic ecosystems. Microorganisms are responsible for removal of TBTCl. Nevertheless, only a limited number of marine bacteria were investigated for biodegradation of TBTCl in Korea. METHODS AND RESULTS: The number of TBTCl resistant bacteria ranged from $2.5{\times}10^3$ to $3.8{\times}10^3$ cfu/mL in the seawater, and ranged from $3.2{\times}10^5$ to $9.1{\times}10^5$ cfu/g in the surface sediment, respectively. The morphological, physiological, and biochemical characteristics of TBTCl resistant bacteria were investigated by API 20NE and other tests. The most abundant species of TBTCl resistant bacteria were Vibrio spp. (19.2%), Bacillus spp. (16.2%), Aeromonas spp. (15.2%), and Pseudomonas spp. (13.1%), etc. Eleven TBTCl resistant isolates also had a resistance to heavy metals (Cd, Cu, Hg, and Zn). Among them, isolate T7 showing the strong TBTCl-resistance was selected. This isolate was identified as the genus Pantoea by 16S rRNA gene sequencing and designated as Pantoea sp. T7. In addition, this bacterium was cultivated up to the growth of 50.7% after 60 hrs at TBTCl concentration of $500{\mu}M$. TBTCl-degrading activity of Pantoea sp. T7 was measured by GC-FPD analysis. As a result of biological TBTCl-degradation at TBTCl concentration of $100{\mu}M$, TBTCl-removal efficiency of Pantoeasp. T7 was 62.7% after 40 hrs. CONCLUSION(S): These results suggest that Pantoea sp. T7 is potentially useful for the bioremediation of TBT contamination.

Complete genome sequence of Pantoea intestinalis SRCM103226, a microbial C40 carotenoid zeaxanthin producer (식용곤충 갈색거저리에서 분리한 카로테노이드 생성균주인 Pantoea intestinalis SRCM103226 균주의 유전체 해독)

  • Kim, Jin Won;Ha, Gwangsu;Jeong, Seong-Yeop;Jeong, Do-Youn
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.167-170
    • /
    • 2019
  • Pantoea intestinalis SRCM103226, isolated from edible insect mealworm overproduces zeaxanthin as a main carotenoid. The complete genome of P. intestinalis SRCM103226 was sequenced using the Pacific Biosciences (PacBio) RS II platform. The genome of P. intestinalis SRCM103226 comprises a 4,784,919 bp circular chromosome (53.41% G+C content), and is devoid of any extrachromosomal plasmids. Annotation using the RAST server reveals 4,332 coding sequences and 107 RNAs (22 rRNA genes, 85 tRNA genes). Genome annotation analysis revealed that it has five genes involved in the carotenoid pathway. The genome information provides fundamental knowledge for comparative genomics studies of the zeaxanthin pathway.

Pantoea Bacteria Isolated from Three Thrips (Frankliniella occidentalis, Frankliniella intonsa, and Thrips tabaci) in Korea and Their Symbiotic Roles in Host Insect Development

  • Gahyeon Jin;Yonggyun Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.745-752
    • /
    • 2023
  • Gut symbionts play crucial roles in host development by producing nutrients and defending against pathogens. Phloem-feeding insects in particular lack essential nutrients in their diets, and thus, gut symbionts are required for their development. Gram-negative Pantoea spp. are known to be symbiotic to the western flower thrips (Frankliniella occidentalis). However, their bacterial characteristics have not been thoroughly investigated. In this study, we isolated three different bacteria (BFoK1, BFiK1, and BTtK1) from F. occidentalis, F. intonsa, and T. tabaci. The bacterial isolates of all three species contained Pantoea spp. Their 16S rRNA sequences indicated that BFoK1 and BTtK1 were similar to P. agglomerans, while BFiK1 was similar to P. dispersa. These predictions were supported by the biochemical characteristics assessed by fatty acid composition and organic carbon utilization. In the bacterial morphological analysis, BFoK1 and BTtK1 were distinct from BFiK1. All these bacteria were relatively resistant to tetracycline compared to ampicillin and kanamycin, in which BFoK1 and BTtK1 were different from BFiK1. Feeding ampicillin (100,000 ppm) reduced the bacterial density in thrips and retarded the development of F. occidentalis. The addition of BFoK1 bacteria, however, rescued the retarded development. These findings indicate that Pantoea bacteria are symbionts to different species of thrips.

A Study of the Growth Condition and Solubilization of Phosphate from Hydroxyapatite by Pantoea agglomeraus

  • Il Jung;Park, Don-Hee;Park, Kyungmoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.4
    • /
    • pp.201-205
    • /
    • 2002
  • The growth conditions of Pantoea aggicmerans, a phosphate solubilizing organism, were studied In our laboratory to determine the optimal conditions. Pantoea aggionerans showed the highest growth rate at 30$\^{C}$, pH 7.0 and 2 vvm, after 50 h cultivation. A certain relationship between pH and phosphate concentration was evident when the glucose concentration in the me dium was changed. Increasing glucose concentration increased the pH buffer action of the broth. At glucose concentrations higher than the optimum concentration of 0.2 M, the cell growth was retarded. P. agglomerans consumed glucose as a substrate to produce organic acids which caused the pH decrease in the culture medium. The phosphate concentration in the medium was increased by the presence of the organic acids, which solubilized insoluble phosphates such as hydroxyapa-tite.

Pantoea spp.에서 분리한 호냉성 ${\beta}-Galactosidase$의 생화학적 특성 및 우유 내 유당분해 활성

  • Choe, Jae-Won;Lee, Seung-Bae;Choe, Seok-Ho
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.10a
    • /
    • pp.384-387
    • /
    • 2004
  • 겨울철 토양에서 ${\beta}-Galactosidase$를 생산하는 균주를 분리하였으며 동정한 결과 그람 음성 간균이고 Pantoea spp. 로 확인되었다. Pantoea spp. 균주의 세포 추출물로부터 DEAE-Sephacel chromatography와 affinity chromatography를 이용하여 ${\beta}-Galactosidase$를 분리하였다. Pantoea spp. 의 ${\beta}-Galactosidase$의 반응 최적 온도는 $45^{\circ}C$이이고 최적 pH는 $5.5{\sim}7.5$이고 열안정성을 조사한 결과 $45^{\circ}C$이상의 온도에서 불활성 되는 것으로 나타났고 E. coli에서 분리된 효소보다 저온에서의 활력이 좋았지만 상업적인 효소인 Kluyveromyces lactis (Validase) 보다는 낮았다.

  • PDF

Mineral Phosphate Solubilization by Wild Type and Radiation Induced Mutants of Pantoea dispersa and Pantoea terrae

  • Murugesan, Senthilkumar;Lee, Young-Keun;Kim, Jung Hun
    • Journal of Radiation Industry
    • /
    • v.3 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • Three mineral phosphate solubilizing (MPS) bacteria where isolated from rhizosphere soil samples of common bean and weed plants. 16S rDNA analysis indicated that the isolate P2 and P3 are closely related to Pantoea dispersa while isolate P4 is closely related to Pantoea terrae. Isolates P2 and P3 recorded $381.60{\mu}g\;ml^{-1}$ and $356.27{\mu}g\;ml^{-1}$ of tricalcium phosphate (TCP) solubilization respectively on 3 days incubation. Isolate P4 recorded the TCP solubilization of $215.85{\mu}g\;ml^{-1}$ and the pH was dropped to 4.44 on 24 h incubation. Further incubation of P4 sharply decreased the available phosphorous to $28.94{\mu}g\;ml^{-1}$ and pH level was raised to 6.32. Gamma radiation induced mutagenesis was carried out at $LD_{99}$ dose of the wild type strains. The total of 14 mutant clones with enhanced MPS activity and 4 clones with decreased activity were selected based on solubilization index (SI) and phosphate solubilization assay. Mutant P2-M1 recorded the highest P-solubilizing potential among any other wild or mutant clones by releasing $504.21{\mu}g\;ml^{-1}$ of phosphorous i.e. 35% higher than its wild type by the end of day 5. A comparative evaluation of TCP solubilization by wild type isolates of Pantoea and their mutants, led to select three MPS mutant clones such as P2-M1, P3-M2 and P3-M4 with a potential to release >$471.67{\mu}g\;ml^{-1}$ of phosphorous from TCP. These over expressing mutant clones are considered as suitable candidates for biofertilization.

Study on the Control of Biofilm Formation Inhibition on Pantoea agglomerans by Anti-bacterial Effect of Indole (인돌의 항균 효과에 의한 Pantoea agglomerans의 바이오필름 생성 억제 조절에 관한 연구)

  • Jin, Seul;Yang, Woong-Suk;Hwang, Cher-Won;Lee, Jae-Yong
    • Journal of Environmental Science International
    • /
    • v.30 no.5
    • /
    • pp.369-378
    • /
    • 2021
  • In this study, we investigated the effects of indole on biofilm formation inhibition in Pantoea agglomerans (P. agglomerans). In the biofilm growth assay, indole inhibited biofilm formation across all the growth time. Depending on biofilm growth stage, indole exhibited biofilm inhibition and anti-bacterial effects on planktonic cells. Through the analysis of the proportion rate between biofilm and Colony Forming Units (CFU) and inhibition rate of indole, we confirmed that depending on the biofilm stage of P. agglomerans, indole treatment timing was more important than the treatment duration. By comparing gene expression rates through rt-qPCR P.agglomerans affected by indole was found to significantly change quorum sensing (pagI/R) and indole transportation (bssS) gene expressions. Throughout all, indole exhibited both antimicrobial and anti-biofilm effects on P. agglomerans. In addition, we confirmed the anti-biofilm effects of indole on mature biofilm. In conclusion, indole as a signal molecule, can exhibit anti-biofilm effects through bacterial quorum sensing inhibition and indole affects. Therefore, indole can regulate biofilm bacteria especially gram-negative opportunistic pathogens.

Inorganic Phosphate Solubilization by Immobilized Pantoea agglomerans under in vitro Conditions (고정화된 Pantoea agglomerans에 의한 난용성 인산의 가용화)

  • Kim, Eun-Hee;Park, Sung-Ae;Park, Myoung-Su;Yang, Jin-chul;Madhaiyan, Munusamy;Seshadri, Sundaram;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.1
    • /
    • pp.36-40
    • /
    • 2004
  • It is now widely accepted that immobilized microbial cells can overcome some of the problems associated with microbial survival stability, efficacy, storage, transportation and ease of application in agricultural environments. Pantoea agglomerans, a phosphate solubilizing bacterium, was immobilized in alginate, agar and gelatin carriers. All the three immobilfized carriers with bacterial cells of P. agglomerans were compared for solubilization of tricalcium phosphate in pure liquid cultures. While alginate beads were tested for phosphate solubilization on alternate days up to five days, agar beads and gelatin cubes were subjected for one time phosphate solubilization analysis after seven days. Both alginate and agar immobilized cells of P. agglomerans exhibited higher efficiency in increasing the solubilizaliun of tricalcium phosphate than gelatin immobilized cells. The culture filtrate of alginate bead inoculation treatment registered a rapid increase in soluble phosphate concentration upon incubation. A corresponding decrease in the pH of the medium was also observed in all the treatments.