• Title/Summary/Keyword: Panchromatic

Search Result 200, Processing Time 0.022 seconds

Comparison of Different Methods to Merge IRS-1C PAN and Landsat TM Data (IRS-1C PAN 데이터와 Landsat TM 데이터의 종합방법 비교분석)

  • 안기원;서두천
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.149-164
    • /
    • 1998
  • The main object of this study was to prove the effectiveness of different merging methods by using the high resolution IRS(Indian Remote Sensing Satellite)-1C panchromatic data and the multispectral Landsat TM data. The five methods used to merging the information contents of each of the satellite data were the intensity-hue-saturation(IHS), principal component analysis(PCA), high pass filter(HPF), ratio enhancement method and look-up-table(LUT) procedures. Two measures are used to evaluate the merging method. These measures include visual inspection and comparisons of the mean, standard deviation and root mean square error between merged image and original image data values of each band. The ratio enhancement method was well preserved the spectral characteristics of the data. From visual inspection, PCA method provide the best result, HPF next, ratio enhancement, IHS and LUT method the worst for the preservation of spatial resolution.

Hyperspectral Image Fusion Algorithm Based on Two-Stage Spectral Unmixing Method (2단계 분광혼합기법 기반의 하이퍼스펙트럴 영상융합 알고리즘)

  • Choi, Jae-Wan;Kim, Dae-Sung;Lee, Byoung-Kil;Yu, Ki-Yun;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.295-304
    • /
    • 2006
  • Image fusion is defined as making new image by merging two or more images using special algorithms. In case of remote sensing, it means fusing multispectral low-resolution remotely sensed image with panchromatic high-resolution image. Generally, hyperspectral image fusion is accomplished by utilizing fusion technique of multispectral imagery or spectral unmixing model. But, the former may distort spectral information and the latter needs endmember data or additional data, and has a problem with not preserving spatial information well. This study proposes a new algorithm based on two stage spectral unmixing model for preserving hyperspectral image's spectral information. The proposed fusion technique is implemented and tested using Hyperion and ALI images. it is shown to work well on maintaining more spatial/spectral information than the PCA/GS fusion algorithms.

A Study on the Seamline Estimation for Mosaicking of KOMPSAT-3 Images (KOMPSAT-3 영상 모자이킹을 위한 경계선 추정 방법에 대한 연구)

  • Kim, Hyun-ho;Jung, Jaehun;Lee, Donghan;Seo, Doochun
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1537-1549
    • /
    • 2020
  • The ground sample distance of KOMPSAT-3 is 0.7 m for panchromatic band, 2.8 m for multi-spectral band, and the swath width of KOMPSAT-3 is 16 km. Therefore, an image of an area wider than the swath width (16 km) cannot be acquired with a single scanning. Thus, after scanning multiple areas in units of swath width, the acquired images should be made into one image. At this time, the necessary algorithm is called image mosaicking or image stitching, and is used for cartography. Mosaic algorithm generally consists of the following 4 steps: (1) Feature extraction and matching, (2) Radiometric balancing, (3) Seamline estimation, and (4) Image blending. In this paper, we have studied an effective seamline estimation method for satellite images. As a result, we can estimate the seamline more accurately than the existing method, and the heterogeneity of the mosaiced images was minimized.

Modified a'trous Algorithm based Wavelet Pan-sharpening Method Using IKONOS Image (IKONOS 영상을 이용한 수정된 a'trous 알고리즘 기반 웨이블릿 영상융합 기법)

  • Kim, Yong Hyun;Choi, Jae Wan;Kim, Hye Jin;Kim, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.305-309
    • /
    • 2009
  • The object of image fusion is to integrate information from multiple images as the same scene. In the satellite image fusion, many image fusion methods have been proposed for combining a high resolution panchromatic(PAN) image with low resolution multispectral(MS) images and it is very important to preserve both the spatial detail and the spectral information of fusion result. The image fusion method using wavelet transform shows good result compared with other fusion methods in preserving spectral information. This study proposes a modified a'trous algorithm based wavelet image fusion method using IKONOS image. Based on the result of experiment using IKONOS image, we confirmed that proposed method was more effective in preserving spatial detail and spectral information than existing fusion methods using a'trous algorithm.

Analysis of Ice Velocity Variations of Nansen Ice Shelf, East Antarctica, from 2000 to 2017 Using Landsat Multispectral Image Matching (Landsat 다중분광 영상정합을 이용한 동남극 난센 빙붕의 2000-2017년 흐름속도 변화 분석)

  • Han, Hyangsun;Lee, Choon-Ki
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1165-1178
    • /
    • 2018
  • Collapse of an Antarctic ice shelf and its flow velocity changes has the potential to reduce the restraining stress to the seaward flow of the Antarctic Ice Sheet, which can cause sea level rising. In this study, variations in ice velocity from 2000 to 2017 for the Nansen Ice Shelf in East Antarctica that experienced a large-scale collapse in April 2016 were analyzed using Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) images. To extract ice velocity, image matching based on orientation correlation was applied to the image pairs of blue, green, red, near-infrared, panchromatic, and the first principal component image of the Landsat multispectral data, from which the results were combined. The Landsat multispectral image matching produced reliable ice velocities for at least 14% wider area on the Nansen Ice Shelf than for the case of using single band (i.e., panchromatic) image matching. The ice velocities derived from the Landsat multispectral image matching have the error of $2.1m\;a^{-1}$ compared to the in situ Global Positioning System (GPS) observation data. The region adjacent to the Drygalski Ice Tongue showed the fastest increase in ice velocity between 2000 and 2017. The ice velocity along the central flow line of the Nansen Ice Shelf was stable before 2010 (${\sim}228m\;a^{-1}$). In 2011-2012, when a rift began to develop near the ice front, the ice flow was accelerated (${\sim}255m\;a^{-1}$) but the velocity was only about 11% faster than 2010. Since 2014, the massive rift had been fully developed, and the ice velocity of the upper region of the rift slightly decreased (${\sim}225m\;a^{-1}$) and stabilized. This means that the development of the rift and the resulting collapse of the ice front had little effect on the ice velocity of the Nansen Ice Shelf.

Fine Co-registration Performance of KOMPSAT-3·3A Imagery According to Convergence Angles (수렴각에 따른 KOMPSAT-3·3A호 영상 간 정밀 상호좌표등록 결과 분석)

  • Han, Youkyung;Kim, Taeheon;Kim, Yeji;Lee, Jeongho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.491-498
    • /
    • 2019
  • This study analyzed how the accuracy of co-registration varies depending on the convergence angles between two KOMPSAT-3·3A images. Most very-high-resolution satellite images provide initial coordinate information through metadata. Since the search area for performing image co-registration can be reduced by using the initial coordinate information, in this study, the mutual information method showing high matching reliability in the small search area is used. Initial coarse co-registration was performed by using multi-spectral images with relatively low resolution, and precise fine co-registration was conducted centering on the region of interest of the panchromatic image for more accurate co-registration performance. The experiment was conducted by 120 combination of 16 KOMPSAT-3·3A 1G images taken in Daejeon area. Experimental results show that a correlation coefficient between the convergence angles and fine co-registration errors was 0.59. In particular, we have shown the larger the convergence angle, the lower the accuracy of co-registration performance.

Epipolar Image Resampling from Kompsat-3 In-track Stereo Images (아리랑3호 스테레오 영상의 에피폴라 기하 분석 및 영상 리샘플링)

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.455-461
    • /
    • 2013
  • Kompsat-3 is an optical high-resolution earth observation satellite launched in May 2012. The AEISS sensor of the Korean satellite provides 0.7m panchromatic and 2.8m multi-spectral images with 16.8km swath width from the sun-synchronous near-circular orbit of 685km altitude. Kompsat-3 is more advanced than Kompsat-2 and the improvements include better agility such as in-track stereo acquisition capability. This study investigated the characteristic of the epipolar curves of in-track Kompsat-3 stereo images. To this end we used the RPCs(Rational Polynomial Coefficients) to derive the epipolar curves over the entire image area and found out that the third order polynomial equation is required to model the curves. In addition, we could observe two different groups of curve patterns due to the dual CCDs of AEISS sensor. From the experiment we concluded that the third order polynomial-based RPCs update is required to minimize the sample direction image distortion. Finally we carried out the experiment on the epipolar resampling and the result showed the third order polynomial image transformation produced less than 0.7 pixels level of y-parallax.

Detection of the Unified Control Points for RPC Adjustment of KOMPSAT-3 Satellite Image (KOMPSAT-3 위성영상의 RPC 보정을 위한 국가 통합기준점 탐지)

  • Lee, Hyoseong;Han, Dongyeob;Seo, Doochun;Park, Byungwook;Ahn, Kiweon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.829-837
    • /
    • 2014
  • The KOMPSAT-3 can acquire panchromatic stereo image with 0.7 m spatial resolution, and provides Rational Polynomial Coefficient (RPC). In order to determine ground coordinate using the provides RPC, which include interior-exterior orientation errors, its adjustment is needed by using the Ground Control Point (GCP). Several thousands of national Unified Control Points (UCPs) are established and overall distributed in the country by the Korean National Geographic Information Institute (NGII). UCPs therefore can be easily searched and downloaded by the national-control-point-record-issues system. This paper introduced the point-extraction method and the distance-bearing method to detect of UCPs. As results, the distance-bearing method was better detected through the experiment. RPC adjustment using this method was compared with that by only one UCP and GCPs using GPS. The proposed method was more accurate than the other method in the horizontal. As demonstrated in this paper, the proposed UCPs detection method could be replaced GPS surveying for RPC adjustment.

A Study of CNN-based Super-Resolution Method for Remote Sensing Image (원격 탐사 영상을 활용한 CNN 기반의 초해상화 기법 연구)

  • Choi, Yeonju;Kim, Minsik;Kim, Yongwoo;Han, Sanghyuck
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.449-460
    • /
    • 2020
  • Super-resolution is a technique used to reconstruct an image with low-resolution into that of high-resolution. Recently, deep-learning based super resolution has become the mainstream, and applications of these methods are widely used in the remote sensing field. In this paper, we propose a super-resolution method based on the deep back-projection network model to improve the satellite image resolution by the factor of four. In the process, we customized the loss function with the edge loss to result in a more detailed feature of the boundary of each object and to improve the stability of the model training using generative adversarial network based on Wasserstein distance loss. Also, we have applied the detail preserving image down-scaling method to enhance the naturalness of the training output. Finally, by including the modified-residual learning with a panchromatic feature in the final step of the training process. Our proposed method is able to reconstruct fine features and high frequency information. Comparing the results of our method with that of the others, we propose that the super-resolution method improves the sharpness and the clarity of WorldView-3 and KOMPSAT-2 images.

The Analysis of 2001 Land Use Distribution of Daejeon Metropolitan City based on KOMPSAT-1 EOC Imagery (KOMPSAT-1 EOC 자료를 활용한 2001년도 대전시 토지이용 현황의 공간적 분포 분석)

  • Kim, Youn-Soo;Jeon, Gap-Ho;Lee, Kwang-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.13-21
    • /
    • 2004
  • The dissemination of commercial satellite images. which have the high spatial resolution such as aerial photos, are the active trend in remote sensing community because of the recent development in satellite and sensor technology. Such high resolution satellite images provide a unique tool for the monitoring of ongoing urban land use change. Especially KOMPSAT-1, which was launched at December 1999 and successfully operated up to now, provides repeatedly panchromatic images over Korean peninsula, which has the spatial resolution of 6.6m. Based upon this KOMPSAT-1 EOC image data we can try to analyze and assess the temporal urban land use change, which could not be done because lack of such data. The aim of this paper is to analyze and assess the spatial land use characteristics of Daejeon Metropolitan City based on KOMPSAT-1 EOC data. The land use map of year 2001 is generated through the modification of the year 2000 land use map, which is published by National Geographic Information Institute, using visual interpretation of KOMPSAT-1 EOC image which is acquired in year 2001. This study can be the start point of the time series analysis of the long term land use change monitoring mit KOMPSAT-1 EOC data.

  • PDF