• 제목/요약/키워드: Panax. Korean ginseng

검색결과 2,497건 처리시간 0.027초

Implications of red Panax ginseng in oxidative stress associated chronic diseases

  • Lee, Yoon-Mi;Yoon, Haelim;Park, Hyun-Min;Song, Byeng Chun;Yeum, Kyung-Jin
    • Journal of Ginseng Research
    • /
    • 제41권2호
    • /
    • pp.113-119
    • /
    • 2017
  • The steaming process of Panax ginseng has been reported to increase its major known bioactive components, ginsenosides, and, therefore, its biological properties as compared to regular Panax ginseng. Biological functions of red Panax ginseng attenuating pro-oxidant environments associated with chronic diseases are of particular interest, since oxidative stress can be a key contributor to the pathogenesis of chronic diseases. Additionally, proper utilization of various biomarkers for evaluating antioxidant activities in natural products, such as ginseng, can also be important to providing validity to their activities. Thus, studies on the effects of red ginseng against various diseases as determined in cell lines, animal models, and humans were reviewed, along with applied biomarkers for verifying such effects. Limitations and future considerations of studying red ginseng were been discussed. Although further clinical studies are warranted, red ginseng appears to be beneficial for attenuating disease-associated symptoms via its antioxidant activities, as well as for preventing oxidative stress-associated chronic diseases.

인삼중의 항산화물질에 관한 연구;제2보 : 인삼의 석유에테르 추출물의 항산화작용 (Studies on the Antioxidant Substances in Panax Ginseng Roots;II. The Antioxidant Activity of Petroleum Ether Extact of Panax Ginseng Roots)

  • 백태홍;홍정태
    • 한국응용과학기술학회지
    • /
    • 제3권1호
    • /
    • pp.39-42
    • /
    • 1986
  • The antioxidant activity of petroleum ether extract of Panax ginseng roots in the oxidation of mixed methyl esters of unsaturated fatty acids(MEUFA) was investigated in vitro. The petroleum ether extract of panax ginseng roots showed the antioxidant activity and inhibited the weight gain in the autoxidation of MEUFA. And the induction periods in the autoxidation of MEUFA were related to te addition concentrations of petroleum ether extact. The antioxidant effect of petroleum ether extract on the autoxidation of MEUFA was caused by the protective formation of lipid peroxides and carbonyl compounds. From the results obtained, it was confirmed that petroleum ether extract of panax ginseng roots contained antioxidant substances.

고려인삼(Panax ginseng) Invertase의 정제와 그 특성 (Purification and Characterization of Invertase from Korean Ginseng Panax ginseng)

  • 김용환;김병묵
    • Journal of Ginseng Research
    • /
    • 제14권1호
    • /
    • pp.14-20
    • /
    • 1990
  • In An invertase (EC 3.2.1.26) was extracted from Korean giseng (Panax ginseng C.A. Meyer) with distilled tvater The ginseng invertase was purified about 62.6 folds purified by procedures including ammonium sulfate fractionation , DEAE-cellulofine chromatography and gelfiltrations through Sephadex G-75 and the recovery of enzyme activity was 11.1%. The homogeneity of the purified enzyme was probed by polyacrylamide gel disc electrophoresis. The purifled enzyme was divided into two different subunits by treating with a mixture of SDS and 2-mercautoethanol, and the molecular weight of the large subunit was estimatedtobe 116,000 and that of the small one to be 14,000. The optimal VH and temperature of the enzyme were pH 6 and 45$^{\circ}C$, respectively. The enzyme hydrolyzed specifically the hydrolyzation of the -fructofuranosides such as sucrose, raffinose and inulin. The Km values of the enzyme for sucrose and raffinose were determined to be 0.85 and 0.6 mM, respectively.

  • PDF

Practical application of DNA markers for high-throughput authentication of Panax ginseng and Panax quinquefolius from commercial ginseng products

  • Jung, Juyeon;Kim, Kyung Hee;Yang, Kiwoung;Bang, Kyong-Hwan;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제38권2호
    • /
    • pp.123-129
    • /
    • 2014
  • Korean ginseng (Panax ginseng) and American ginseng (Panax quinquefolius) are widely used medicinal plants with similar morphology but different medicinal efficacy. Roots, flowers, and processed products of Korean and American ginseng can be difficult to differentiate from each other, leading to illegal trade in which one species is sold as the other. This study was carried out to develop convenient and reliable chloroplast genome-derived DNA markers for authentication of Korean and American ginseng in commercial processed products. One codominant marker could reproducibly identify both species and intentional mixtures of the two species. We further developed a set of species-unique dominant DNA markers. Each species-specific dominant marker could detect 1% cross contamination with other species by low resolution agarose gel electrophoresis or quantitative polymerase chain reaction. Both markers were successfully applied to evaluate the original species from various processed ginseng products purchased from markets in Korea and China. We believe that high-throughput application of this marker system will eradicate illegal trade and promote confident marketing for both species to increase the value of Korean as well as American ginseng in Korea and worldwide.

Ginseng and ion channels: Are ginsenosides, active component of Panax ginseng, differential modulator of ion channels?

  • Jeong, Sang-Min;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제29권1호
    • /
    • pp.19-26
    • /
    • 2005
  • The last two decades have shown a marked expansion in publications of diverse effects of Panax ginseng. Ginsenosides, as active ingredients of Panax ginseng, are saponins found in only ginseng. Recently, a line of evidences shows that ginsenosides regulate various types of ion channel activity such as $Ca^{2+},\;K^+,\;Na^+,\;Cl^-$, or ligand gated ion channels (i.e. $5-HT_3$, nicotinic acetylcholine, or NMDA receptor) in neuronal, non-neuronal cells, and heterologously expressed cells. Ginsenosides inhibit voltage-dependent $Ca^{2+},\;K^+,\;and\;Na^+$ channels, whereas ginsenosides activate $Ca^{2+}-activated\;Cl^-\;and\;Ca^{2+}-activated\;K^+$ channels. Ginsenosides also inhibit excitatory ligand-gated ion channels such as $5-HT_3$, nicotinic acetylcholine, and NMDA receptors. This review will introduce recent findings on the ginsenoside-induced differential regulations of ion channel activities and will further expand the possibilities how these ginsenoside-induced ion channel regulations are coupled to biological effects of Panax ginseng.

Scavenging Strategy of Panax ginseng Against Formed Free Radicals Under Stress of Mercuric Chloride in Rattus norvegicus

  • Mahour, Kanhiya;Saxena, Prabhu N.
    • Journal of Ginseng Research
    • /
    • 제32권2호
    • /
    • pp.150-154
    • /
    • 2008
  • Twenty five albino rats were divided into five groups for conducting this experiment. The first group was for positive control (Vitamin C, ascorbic acid), the second group was of Panax ginseng (10 mg/kg body weight) treated group after bio-activity assay, the third group was of mercuric chloride treated group (0.033 mg/kg body weight) based on calculating $LD_{50}$ 9.26 mg/kg body weight by probit analysis, the fourth group was of mercuric chloride (0.033 mg/kg body weight) followed by Panax ginseng (10 mg/kg body weight) and the fifth group was Panax ginseng (10 mg/kg body weight) followed by mercuric chloride (0.033 mg/kg body weight) treated group. The interval between intake of Panax ginseng and mercuric chloride was of 2 hours in groups, fourth and fifth respectively. Comparative free radical scavenging property of Panax ginseng was studied under three in vitro models (role model for calculating scavenging activity) viz. DPPH method (hydroxyl free radicals), Nitric oxide method (nitrile free radicals) and Lipid peroxidation (mercury free radicals).

Panax ginseng C.A. Meyer의 PD와 PT는 아드레날린에 의해 유인된 사람 혈소판의 응집반응에서 Thromboxane $A_2$의 생성을 저해한다 (Panaxadiol and Panaxatriol from Panax ginseng C.A. Meyer Inhibit the Synthesis of Thromboxane $A_2$ in Adrenaline-Stimulated Human Platelet Aggregations)

  • Park, Kyeong-Mee;Rhee, Man-Whee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • 제18권1호
    • /
    • pp.44-48
    • /
    • 1994
  • In adrenaline-stimulated human platelets, panaxadiol (PD) and panaxatriol (PT) from Panax ginseng C.A. Meyer did not inhibit the $Ca^{2+}$-innux, but inhibited the formation of thromboxane $A_2$ and the platelet aggregations. It seems that PD and PT block a pathyway interconvefing arachidonic acids (20:4) to thromboxane $A_2$ (TX $A_2$), because the amount of $Ca^{2+}$ which phospholipase C or phospholipase $A_2$ requires to liberate 20 : 4 from membrane phospholipids was increased by PD and PT. These results mean that PH and PT have an antiplatelet effect by Inhibiting the formation of TX $A_2$.

  • PDF

Effects of Panax species and their bioactive components on allergic airway diseases

  • Dahee Shim;Yeeun Bak;Han-Gyu Choi;Seunghyun Lee;Sang Chul Park
    • Journal of Ginseng Research
    • /
    • 제48권4호
    • /
    • pp.354-365
    • /
    • 2024
  • Panax species include Panax ginseng Meyer, Panax quinquefolium L., Panax notoginseng, Panax japonicum, Panax trifolium, and Panax pseudoginseng, which contain bioactive components (BCs) such as ginsenosides and polysaccharides. Recently, growing evidence has revealed the pharmacological effects of Panax species and their BCs on allergic airway diseases (AADs), including allergic asthma (AA) and allergic rhinitis (AR). AADs are characterized by damaged epithelium, sustained acquired immune responses with enforced Th2 responses, allergenspecific IgE production, and enhanced production of histamine and leukotrienes by activated mast cells and basophils. In this review, we summarize how Panax species and their BCs modulate acquired immune responses involving interactions between dendritic cells and T cells, reduce the pro-inflammatory responses of epithelial cells, and reduce allergenic responses from basophils and mast cells in vitro. In addition, we highlight the current understanding of the alleviative effects of Panax species and their BCs against AA and AR in vivo. Moreover, we discuss the unmet needs of research and considerations for the treatment of patients to provide basic scientific knowledge for the treatment of AADs using Panax species and their BCs.