• Title/Summary/Keyword: Panax. Korean ginseng

Search Result 2,497, Processing Time 0.029 seconds

Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions

  • Irfan, Muhammad;Kwak, Yi-Seong;Han, Chang-Kyun;Hyun, Sun Hee;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.538-543
    • /
    • 2020
  • Cardiovascular diseases are a rapidly growing epidemic with high morbidity and mortality. There is an urgent need to develop nutraceutical-based therapy with minimum side effects to reduce cardiovascular risk. Panax ginseng occupies a prominent status in herbal medicine for its various therapeutic effects against inflammation, allergy, diabetes, cardiovascular diseases, and even cancer, with positive, beneficial, and restorative effects. The active components found in most P. ginseng varieties are known to include ginsenosides, polysaccharides, peptides, alkaloids, polyacetylene, and phenolic compounds, which are considered to be the main pharmacologically active constituents in ginseng. P. ginseng is an adaptogen. That is, it supports living organisms to maintain optimal homeostasis by exerting effects that counteract physiological changes caused by physical, chemical, or biological stressors. P. ginseng possesses immunomodulatory (including both immunostimulatory and immunosuppressive), neuromodulatory, and cardioprotective effects; suppresses anxiety; and balances vascular tone. P. ginseng has an antihypertensive effect that has been explained by its vasorelaxant action, and paradoxically, it is also known to increase blood pressure by vasoconstriction and help maintain cardiovascular health. Here, we discuss the potential adaptogenic effects of P. ginseng on the cardiovascular system and outline a future research perspective in this area.

An investigation of Panax ginseng Meyer growth promotion and the biocontrol potential of antagonistic bacteria against ginseng black spot

  • Sun, Zhuo;Yang, Limin;Zhang, Lianxue;Han, Mei
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.304-311
    • /
    • 2018
  • Background: Ginseng black spot disease resulting from Alternaria panax Whuetz is a common soil-borne disease, with an annual incidence rate higher than 20-30%. In this study, the bacterial strains with good antagonistic effect against A. panax are screened. Methods: A total of 285 bacterial strains isolated from ginseng rhizosphere soils were screened using the Kirby-Bauer disk diffusion method and the Oxford cup plate assay. We analyzed the antifungal spectrum of SZ-22 by confronting incubation. To evaluate the efficacy of biocontrol against ginseng black spot and for growth promotion by SZ-22, we performed pot experiments in a plastic greenhouse. Taxonomic position of SZ-22 was identified using morphology, physiological, and biochemical characteristics, 16S ribosomal DNA, and gyrB sequences. Results: SZ-22 (which was identified as Brevundimonas terrae) showed the strongest inhibition rate against A. panax, which showed 83.70% inhibition, and it also provided broad-spectrum antifungal effects. The inhibition efficacies of the SZ-22 bacterial suspension against ginseng black spot reached 82.47% inhibition, which is significantly higher than that of the 25% suspension concentrate azoxystrobin fungicide treatment (p < 0.05). Moreover, the SZ-22 bacterial suspension also caused ginseng plant growth promotion as well as root enhancement. Conclusion: Although the results of the outdoor pot-culture method were influenced by the pathogen inoculum density, the cropping history of the field site, and the weather conditions, B. terrae SZ-22 controlled ginseng black spot and promoted ginseng growth successfully. This study provides resource for the biocontrol of ginseng black spot.

Quinetides: diverse posttranslational modified peptides of ribonuclease-like storage protein from Panax quinquefolius as markers for differentiating ginseng species

  • Zhao, Qiang;Bai, Yunpeng;Liu, Dan;Zhao, Nan;Gao, Huiyuan;Zhang, Xiaozhe
    • Journal of Ginseng Research
    • /
    • v.44 no.5
    • /
    • pp.680-689
    • /
    • 2020
  • Background: Peptides have diverse and important physiological roles in plants and are ideal markers for species identification. It is unclear whether there are specific peptides in Panax quinquefolius L. (PQ). The aims of this study were to identify Quinetides, a series of diverse posttranslational modified native peptides of the ribonuclease-like storage protein (ginseng major protein), from PQ to explore novel peptide markers and develop a new method to distinguish PQ from Panax ginseng. Methods: We used different fragmentation modes in the LTQ Orbitrap analysis to identify the enriched Quinetide targets of PQ, and we discovered Quinetide markers of PQ and P. ginseng using ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis. These "peptide markers" were validated by simultaneously monitoring Rf and F11 as standard ginsenosides. Results: We discovered 100 Quinetides of PQ with various post-translational modifications (PTMs), including a series of glycopeptides, all of which originated from the protein ginseng major protein. We effectively distinguished PQ from P. ginseng using new "peptide markers." Four unique peptides (Quinetides TP6 and TP7 as markers of PQ and Quinetides TP8 and TP9 as markers of P. ginseng) and their associated glycosylation products were discovered in PQ and P. ginseng. Conclusion: We provide specific information on PQ peptides and propose the clinical application of peptide markers to distinguish PQ from P. ginseng.

The Effect of Benomyl Treatments on Ginsenosides and Arbuscular Mycorrhizal Symbiosis in Roots of Panax ginseng

  • Eo, Ju-Kyeong;Eom, Ahn-Heum
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.256-259
    • /
    • 2009
  • The effects of benomyl treatment on ginsenoside and arbuscular mycorrhizal (AM) symbiosis in the roots of Panax ginseng that were collected from two sites in Korea were investigated. The ginseng roots that were treated with benomyl showed different species compositions of AM fungi colonizing the ginseng roots, compared to untreated roots. In the analysis of ginsenoside, Rc was significantly higher in benomyl untreated roots than in benomyl treated roots. The results suggest that AM fungal species composition and ginsenosides in ginseng root could be influenced by the benomyl treatment.

Sucrose Synthase, UDP-glucose pyrophosphorylase and ADP-glucose Pyrophosphorylnse in Korea Ginseng Roots

  • Yelena V.Sundukova;Lee, Mi-Ja;Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.24 no.2
    • /
    • pp.83-88
    • /
    • 2000
  • The seasonal variation in the activity of sucrose synthase, ADP-glucose pyrophosphorylase and UDP-glucose pyrophosphorylase in roots of Panax ginseng C.A.Meyer have been studied. It was revealed that sucrose synthase and ADP-glucose pyrophosphorylase are adaptive enzymes and can serve as markers of sink strength, while UDP-glucose pyrophosphorylase is the maintenance enzyme. The average day temperature exceeded 24。C appeared to cause the disturbance in refilling process, affecting the starch synthesis. Study on the dependence of oxygen consumption in stele tissue with temperature revealed the sharp accelerating of this process after 24。C.

  • PDF

Adventitious Root Development and Ginsenoside Production in Panax ginseng, Panax quinquefolium and Panax japonicum

  • Han, Jung-Yeon;Kwon, Yong-Soo;Choi, Yong-Eui
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.147-152
    • /
    • 2006
  • This work was carried out to establish adventitious root culture system in three Panax species (wild-grown P. ginseng, P. quinquefolium, and P. japonicum) to analyze their ginsenoside productivity. Adventitious roots were induced directly from segments of seedlings after cultured on MS(Murashige andSkoog 1962) solid medium containing 3.0 mg/l IBA. Omission of $NH_4NO_3$ from the medium greatly enhanced both the frequency of adventitious root formation and number of roots per explants in all the three Panax species. However, elongation of post-induced adventitious roots was enhanced on medium with $NH_4NO_3$. Two-step culture protocol: $NH_4NO_3$-free medium for first two weeks of culture, followed by $NH_4NO_3$ containing medium for further 4 weeks, greatly enhanced the fresh weight increase of adventitious roots in all the three ginseng species. The fresh weight of adventitious roots was high in P. quinquefolium and low in P. ginseng, followed by P. japonioum regardless of the composition of medium. Pattern and content of ginsenosides in adventitious roots differed among the three Panax species. Total ginsenoside content of adventitious roots in P. quinquefolium, P. ginseng, and p. japonicum was 8.03, 15.7 and 1.2 mg/g dry weight, respectively. Among the three speices, adventitious roots in P. quinquefolium produced hig-hamount of ginsenosides. The pattern of ginsenoside fractions between P. ginseng and P. quinquefolium was similar but the amount of ginsenoside differed between the two, While, in P japonicum, total ginsenoside content was very low and some ginsenosides such as ginsenoside Rb2 and Rf were not detected. Conclusively, we demonstrate that same culture condition was required for induction and elongation of adventitious roots of three ginseng species but growth of adventitious roots and their ginsenoside production were different among them.

First Report of Sclerotinia White Rot Caused by Sclerotinia nivalis on Panax ginseng in Korea

  • Cho, Hye Sun;Shin, Jeong-Sup;Kim, Jae-Hyun;Hong, Tae-Kyun;Cho, Dae-Hui;Kang, Je Yong
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • Sclerotinia white rot disease was observed on 5 and 6-year-old ginseng (Panax ginseng) roots in Hongchun, Cheorwon, and Yanggu, Gangwon Province, Korea from 2006 to 2010. Symptoms included a brownish watery soft rot of the roots, and black sclerotia were often found on the rotten roots. The causal agent of the disease was identified as Sclerotinia nivalis based on cultural characteristics and sequence analyses of the internal transcribed spacer region of rDNA and ${\beta}$-tubulin gene with 100% sequence similarity. Pathogenicity tests were performed on 2-year-old ginseng roots with mycelium plugs without wounds. A watery soft rot of the roots and black sclerotia were observed 10 days after inoculation. These symptoms were identical to those observed on naturally infected roots. The same fungus was re-isolated from the lesions induced by artificial inoculation. This is the first report of sclerotinia white rot caused by S. nivalis on P. ginseng in Korea.

Simultaneous determination of 30 ginsenosides in Panax ginseng preparations using ultra performance liquid chromatography

  • Park, Hee-Won;In, Gyo;Han, Sung-Tai;Lee, Myoung-Woo;Kim, So-Young;Kim, Kyung-Tack;Cho, Byung-Goo;Han, Gyeong-Ho;Chang, Il-Moo
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.457-467
    • /
    • 2013
  • A quick and simple method for simultaneous determination of the 30 ginsenosides (ginsenoside Ro, Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, 20(S)-Rg2, 20(R)-Rg2, 20(S)-Rg3, 20(R)-Rg3, 20(S)-Rh1, 20(S)-Rh2, 20(R)-Rh2, F1, F2, F4, Ra1, Rg6, Rh4, Rk3, Rg5, Rk1, Rb3, Rk2, Rh3, compound Y, compound K, and notoginsenoside R1) in Panax ginseng preparations was developed and validated by an ultra performance liquid chromatography photo diode array detector. The separation of the 30 ginsenosides was efficiently undertaken on the Acquity BEH C-18 column with gradient elution with phosphoric acids. Especially the chromatogram of the ginsenoside Ro was dramatically enhanced by adding phosphoric acid. Under optimized conditions, the detection limits were 0.4 to 1.7 mg/L and the calibration curves of the peak areas for the 30 ginsenosides were linear over three orders of magnitude with a correlation coefficients greater than 0.999. The accuracy of the method was tested by a recovery measurement of the spiked samples which yielded good results of 89% to 118%. From these overall results, the proposed method may be helpful in the development and quality of P. ginseng preparations because of its wide range of applications due to the simultaneous analysis of many kinds of ginsenosides.

Antioxidant activities of flower, berry and leaf of Panax ginseng C. A. Meyer

  • Ryu, Hee-Jeong;Jung, Chul-Jong;Beik, Gyung-Yun
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.342-349
    • /
    • 2020
  • This study was conducted to investigate the applicability of the ground parts such as flower (GF), berry (GR), and leaf (GL) from Panax ginseng C. A. Meyer. The ground parts were extracted from hot water (WE) and 60% ethanol (EE). Total polyphenol and flavonoid contents were 15.02-32.74 and 21.60-484.05 mg GAE/g, respectively. Hot water extract of ginseng leaf (GLWE) and 60% ethanol extract of ginseng leaf (GLEE) showed higher total polyphenol and total flavonoid contents than other extracts. Crude saponin contents were found in the range of 15.30-37.27%. Antioxidant activity of these extracts from ginseng was also analyzed by DPPH, ABTS, H2O2 scavenging activity, reducing power, and inhibition effect on lipid peroxidation. We confirmed the results that hot water extract of ginseng leaf (GLWE), 60% ethanol extract of ginseng leaf (GLEE) has high anti-oxidative effects. According to the antioxidant activity results of each extract of ginseng flower, ginseng berry, and ginseng leaf, it is judged that their availability is very high, and if proper processing is performed, it can be used as a functional raw material.

Anxiolytic-like Effects of Panax ginseng on the Elevated Plus-maze Model in Mice

  • CHA Hwa-Young;SEO Jeong-Ju;PARK Jeong-Hill;EUN Jae-Soon;LEE Seung-Ho;HWANG Bang-Yeon;HONG Jin-Tae;OH Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.156-164
    • /
    • 2005
  • This study was performed to investigate the anxiolytic-like effects Panax ginseng in mice using the elevated plus-maze model. Furthermore, the anxiolytic-like effects of Panax ginseng were compared to a known active anxiolytic drug, diazepam. Ginseng total saponin (GTS, 100 mg/kg) from red ginseng (RG), sun ginseng (SG) total extract (50 mg/kg), butanol fraction of SG(25 and 50 mg/kg) and ginsenosides ($Rb_1,\;Rg_1,\;and\;Rg_5$ and Rk mixture) significantly increased the number of open arm entries and the time spent on the open arm, compared with that of control. However, Red ginseng (RG) total extract (l00 mg/kg), GTS (25, 50 mg/kg), SG total extract (25 mg/kg) and ginsenosides ($Rg_{3}-R\;and\;Rg_{3}-S$) did not increase the number of open arm entries and the time spent on the open arm. On the other hand, butanol fraction of RG (l00 mg/kg), total extract of SG (50 mg/kg), butanol fraction of SG (50 mg/kg), ginsenosides ($Rb_{1},\;and\;Rg_{5}$ and Rk mixture) decreased the locomotor activity, in a similar fashion to diazepam. These data support that ginseng has the anxiolytic-like effects and the anxiolytic potential of SG was stronger than that of RG. Ginsenosides $Rb_{1},\;Rg_{1},\;and\;Rg_{5}$ and Rk mixture play important role on the anxiolytic-like effects of Panax ginseng. We provide evidence that ginseng and some ginsenosides may be useful for the treatment of anxiety.