• Title/Summary/Keyword: Panax notoginseng(PNS)

Search Result 4, Processing Time 0.016 seconds

Inhibitory Effect of Panax notoginseng on Nitric Oxide Synthase, Cyclo-oxygenase-2 and Neutrophil Functions

  • Park, Soon-Gi;Joo, Shin-Tak;Ban, Chang-Gyu;Moon, Jin-Young;Park, Sun-Dong;Park, Won-Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1295-1302
    • /
    • 2006
  • Our preliminary aim is to elucidate the pharmacokinetic features of the PNS(Panax notoginseng Buck F.H. Chen. (Arialiaceae) root). First, we assessed the prevention of neurtrophil functions. A Panax notoginseng inhibited neutrophil functions, including degranulation, superoxide generation, and leukotriene B4 production, without any effect on 5-lipoxygenase activity. This Panax notoginseng reduced nitric oxide (NO) and prostaglandin E2 production in mouse peritoneal macrophages stimulated with lipopolysaccharide, whereas no influence on the activity of inducible NO synthase, cyclo-oxygenase-2 or cyclo-oxygenase-1 was observed. Panax notoginseng significantly reduced mouse paw oedema induced by carrageenan. The results indicate that Panax notoginseng exerts anti-inflammatory effects related to the inhibition of neutrophil functions and of NO and prostaglandin E2 production, which could be due to a decreased expression of inducible NO synthase and cyclo-oxygenase-2.

New dammarane-type triterpenoid saponins from Panax notoginseng saponins

  • Li, Qian;Yuan, Mingrui;Li, Xiaohui;Li, Jinyu;Xu, Ming;Wei, Di;Wu, Desong;Wan, Jinfu;Mei, Shuangxi;Cui, Tao;Wang, Jingkun;Zhu, Zhaoyun
    • Journal of Ginseng Research
    • /
    • v.44 no.5
    • /
    • pp.673-679
    • /
    • 2020
  • Background: Panax notoginseng saponin (PNS) is the extraction from the roots and rhizomes of Panax notoginseng (Burk.) F. H. Chen. PNS is the main bioactive component of Xuesaitong, Xueshuantong, and other Chinese patent medicines, which are all bestselling prescriptions in China to treat cardiocerebrovascular diseases. Notoginsenoside R1 and ginsenoside Rg1, Rd, Re, and Rb1 are the principal effective constituents of PNS, but a systematic research on the rare saponin compositions has not been conducted. Objective: The objective of this study was to conduct a systematic chemical study on PNS and establish the HPLC fingerprint of PNS to provide scientific evidence in quality control. In addition, the cytotoxicity of the new compounds was tested. Methods: Pure saponins from PNS were isolated by means of many chromatographic methods, and their structures were determined by extensive analyses of NMR and HR-ESI-MS studies. The fingerprint was established by HPLC-UV method. The cytotoxicity of the compounds was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5 -diphenyltetrazolium bromide assay. Results and Conclusion: Three new triterpenoid saponins (1-3) together with 25 known rare saponins (4-28) were isolated from PNS, except for the five main compounds (notoginsenoside R1 and ginsenoside Rg1, Rd, Re, and Rb1). In addition, the HPLC fingerprint of PNS was established, and the peaks of the isolated compounds were marked. The study of chemical constituents and fingerprint was useful for the quality control of PNS. The study on antitumor activities showed that new Compound 2 exhibited significant inhibitory activity against the tested cell lines.

The effect of Panax notoginseng saponins on oxidative stress induced by PCV2 infection in immune cells: in vitro and in vivo studies

  • Wang, Qiu-Hua;Kuang, Na;Hu, Wen-yue;Yin, Dan;Wei, Ying-Yi;Hu, Ting-Jun
    • Journal of Veterinary Science
    • /
    • v.21 no.4
    • /
    • pp.61.1-61.16
    • /
    • 2020
  • Background: Panax notoginseng saponins (PNS) are bioactive substances extracted from P. notoginseng that are widely used to treat cardiovascular and cerebrovascular diseases and interstitial diseases. PNS have the functions of scavenging free radicals, anti-inflammation, improving blood supply for tissue and so on. Objectives: The aim of this study was to investigate the effects of PNS on the oxidative stress of immune cells induced by porcine circovirus 2 (PCV2) infection in vitro and in vivo. Methods: Using an oxidative stress model of PCV2 infection in a porcine lung cell line (3D4/2 cells) and mice, the levels of nitric oxide (NO), reactive oxygen species (ROS), total glutathione (T-GSH), reduced glutathione (GSH), and oxidized glutathione (GSSG) and the activities of xanthine oxidase (XOD), myeloperoxidase (MPO) and inducible nitric oxide synthetase (iNOS) were determined to evaluate the regulatory effects of PNS on oxidative stress. Results: PNS treatment significantly reduced the levels of NO and ROS, the content of GSSG and the activities of XOD, MPO, and iNOS (p < 0.05), while significantly increasing GSH and the ratio of GSH/GSSG in infected 3D4/2 cells (p < 0.05).Similarly, in the in vivo study, PNS treatment significantly decreased the level of ROS in spleen lymphocytes of infected mice (p < 0.05), increased the levels of GSH and T-GSH (p < 0.05), significantly decreased the GSSG level (p < 0.05), and decreased the activities of XOD, MPO, and iNOS. Conclusions: PNS could regulate the oxidative stress of immune cells induced by PCV2 infection in vitro and in vivo.

Effect of Panax notoginseng on Hepatic Microvascular Dysfunction in Rats

  • Lee, Soo-Kyoung;Kim, Jun-Gi;Choi, Dall-Young;Park, Won-Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1658-1663
    • /
    • 2006
  • Panax notoginseng (Buck) F.H chen. root (PNS) is used as a therapeutic agent to stop haemorrhages and a tonic to promote health in Korean and Chinses medicine. The pharmacokinetic profiles of the main PNS are still not accurately investigated. Our preliminary aim is to elucidate the pharmacokinetics features of the PNS in rats. Objective of this study is to determine whether PNS affects hepatic microvascular dysfunction elicited by gut ischemia and reperfusion (I/R), since gut I/R causes hepatic microvascular dysfunction, and to investigate the role of nitric oxide (NO). No has been found to be a modulator of the adhesive interactions between platelet and endothelial cells. Male Wistar rats were exposed to 30 min of gut ischemia followed by 60 min of reperfusion. Intravital microscopy was used to monitor the number of non-perfused sinusoids (NPS). In another set of experiments, PNS (1 g/kg pre day intragastrically) was administered to rats for 7 days. In some experiments, dexamethasone (ST) (2 mg/kg per day intravenously) was administered. In control rats, gut I/R elicited increases in the number of NPS, and plasma TNF-${\alpha}$ and ALT activities, and these changes were mitigated by the pretreatment with PNS. Pretreatment with an No synthase inhibitor diminished the protective effects of PNS on the increase in NPS and plasma TNF-${\alpha}$ levels, but not its effect on the increase in plasma ALT activities. Pretreatment with PNS increased plasma nitrite/nitrate levels. The responses caused by gut I/R were attenuated by the pretreatment with ST. Pretreatment with an NO synthase inhibitor did not affect the effect of ST. These results suggest that PNS attenuates the gut I/R-induced hepatic microvascular dysfunction and inflammatory responses such as TNF-${\alpha}$ production in the early phase via enhancement of NO production, and sequential hepatocellular damage via its anti-inflammatory effect like corticosteroid effect.