• Title/Summary/Keyword: Panax ginseng seeds

Search Result 85, Processing Time 0.024 seconds

Emergence Rate and Growth Characteristics of Ginseng Affected by Different Types of Organic Matters in Greenhouse of Direct-Sowing Culture (비닐하우스에서 인삼 직파재배 시 유기물 처리에 따른 연차간 입모율 및 생육특성)

  • Park, Hong Woo;Mo, Hwang Sung;Jang, In Bae;Yu, Jin;Lee, Young Seob;Kim, Young Chang;Park, Kee Choon;Lee, Eung Ho;Kim, Ki Hong;Hyun, Dong Yun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.1
    • /
    • pp.27-36
    • /
    • 2015
  • Shading and soil environment are the main factors of growth and yield in ginseng (Panax ginseng C. A. Meyer). Ginseng yield is directly related to survival rate because of increased missing plant for their growing period. Under field conditions, diseases and pests significantly affect plant survival rate. We evaluated the seedling establishment, growth and ginsenoside of the ginseng plants, under controlled management conditions in a plastic greenhouse, when their treated with different types of organic matter. Ginseng seeds were sown at a rate of three seeds per hole, and the seeding space measured $10cm{\times}15cm$. Compared to the control, treatment of cattle manure vermicompost (CMV) was shown to increase seedling establishment and decrease ginsenoside content. Root weights of plants treated with CMV were higher than those of plants treated with other types of organic matter. In addition, seedling establishment of 2-year-old ginseng plants was decreased when it was compared to that of 1-year-old ginseng plants. Our results indicated that organic matter type and rate were associated with seedling establishment, growth characteristic and ginsenoside content in greenhouse of ginseng direct-sowing culture.

Enhancement of seed germination and microbial disinfection on ginseng by cold plasma treatment

  • Lee, Younmi;Lee, Young Yoon;Kim, Young Soo;Balaraju, Kotnala;Mok, Young Sun;Yoo, Suk Jae;Jeon, Yongho
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.519-526
    • /
    • 2021
  • Background: This study aimed to investigate the effect of cold plasma treatment on the improvement of seed germination and surface sterilization of ginseng seeds. Methods: Dehisced ginseng (Panax ginseng) seeds were exposed to dielectric barrier discharge (DBD) plasma operated in argon (Ar) or an argon/oxygen mixture (Ar/O2), and the resulting germination and surface sterilization were compared with those of an untreated control group. Bacterial and fungal detection assays were performed for plasma-treated ginseng seeds after serial dilution of surface-washed suspensions. The microbial colonies (fungi and bacteria) were classified according to their phenotypical morphologies and identified by molecular analysis. Furthermore, the effect of cold plasma treatment on the in vitro antifungal activity and suppression of Cylindrocarpon destructans in 4-year-old ginseng root discs was investigated. Results: Seeds treated with plasma in Ar or Ar/O2 exhibited a higher germination rate (%) compared with the untreated controls. Furthermore, the plasma treatment exhibited bactericidal and fungicidal effects on the seed surface, and the latter effect was stronger than the former. In addition, plasma treatment exhibited in vitro antifungal activity against C. destructans and reduced the disease severity (%) of root rot in 4-year-old ginseng root discs. The results demonstrate the stimulatory effect of plasma treatment on seed germination, surface sterilization, and root rot disease suppression in ginseng. Conclusion: The results of this study indicate that the cold plasma treatment can suppress the microbial community on the seed surface root rot in ginseng.

Effects of $GA_3$ and ABA Application on After-ripening of Panax quinquefolium Seeds during Stratification ($GA_3$ 및 ABA 사용이 매장처리 중 미국삼 종자의 후숙에 미치는 영향)

  • Guixing Ren;Feng Chen;Haozhe Lian;Jinghui Zhao;Xianzong Gao;Chongming Guo
    • Journal of Ginseng Research
    • /
    • v.20 no.1
    • /
    • pp.83-87
    • /
    • 1996
  • The effects of gibberilin ($GA_3$) on levels of endogenous indole-3-acetic acid (IAA) and zeatin in both fresh and stratified American ginseng (Panax quinquefolium) seeds were investigated. In our first experiment, the fresh seeds were stratified after soaked in 80 ppd $GA_3$ solution for 24 hours. We found that the IAA concentration in embryo increased by 50.7% and 82.1% respectively at the 120th day and the 188th day of stratification, and the zeatin concentration also increased by 3.8% and 51.6% respectively. In our second experiment, we treated the seeds after 134 days stratification with 80 ppm GA3 for 24 hours and then continued to stratify them. We found that the IAA concentration in embryo increased by 32.9% and 17.7% respectively at the 164th day and the 208th day of stratification while zeatin concentration increased by 22.7% and 30.6% respectively In our another experiment, we studied the effects of $GA_3$, abscislc acid (ABA) and GA, plus ABA on germination rate of seeds treated with these plant hormones during stratification. We found that when the stratified seeds whose ratio of embryo had reached 75% were treated with 80 ppm GA3 for 24 hours and then were allowed to be stratified for another 88 days, the weight and length of embryo (p < 0.05), and germination rate (p < 0.01) increased. In contrast, the 25 ppm ABA treated with for 24 hours was found to Inhibit the growth of embryo (p < 0.05) and reduce the germination rate (p < 0.05) . The experiment of combination treatment of $GA_3$ and ABA showed that $GA_3$ could relieve the inhibitory effects of the ABA on the development of the seeds.

  • PDF

Genetic Diversity Analysis of Wood-cultivated Ginseng using Simple Sequence Repeat Markers (SSR 마커를 이용한 산양삼의 유전적 다양성 분석)

  • Gil, Jinsu;Um, Yurry;Byun, Jae Kyung;Chung, Jong Wook;Lee, Yi;Chung, Chan Moon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.6
    • /
    • pp.389-396
    • /
    • 2017
  • Background: Panax ginseng C. A. Meyer is wood-cultivated ginseng (WCG) in Korea which depends on an artificial forest growth method. To produce this type of ginseng, various P. ginseng cultivars can be used. To obtain a WCG similar to wild ginseng (WG), this method is usually performed in a mountain using seeds or seedlings of cultivated ginseng (CG) and WG. Recently, the WCG industry is suffering a problem in that Panax notoginseng (Burk.) F. H. Chen or Panax quinquefolium L. are being sold as WCG Korean market; These morphological similarities have created confusion among customers. Methods and Results: WCG samples were collected from five areas in Korea. After polymerase chain reaction (PCR) amplification using the primer pair labeled with fluorescence dye (FAM, NED, PET, or VIC), fragment analysis were performed. PCR products were separated by capillary electrophoresis with an ABI 3730 DNA analyzer. From the results, WCG cultivated in Korea showed very diverse genetic background. Conclusions: In this study, we tried to develop a method to discriminate between WCG, P. notoginseng or P. quinquefolium using simple sequence repeat (SSR) markers. Furthermore, we analyzed the genetic diversity of WCG collected from five cultivation areas in Korea.

Physicochemical Characteristics of Various Ginseng Seeds (품종 별 인삼 씨의 이화학적 성분 비교)

  • Kim, Hee Jung;Yoo, Kyung Mi;Lee, Seul;Kim, Kyung-Tack;Hwang, In Kyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.274-278
    • /
    • 2013
  • The aim of our study was to investigate the chemical composition of the Asian ginseng seed (Panax ginseng C.A. Meyer) and the American ginseng seed (Panax quinquifolium L.) grown in Korea (3 years, KGS3; 4 years, KGS4), China (4 years, CGS4), and USA (4 years, AGS4). AGS had the heaviest 100-seed weight ($4.21{\pm}0.31g$). The approximate compositions of the ginseng seeds were 13.66-17.00% crude protein, 2.21-8.65% crude ash, 19.06-24.06% crude lipid, and 43.21-47.49% crude fiber. The mineral contents of the ginseng seeds were greater in order of K>P>Ca>Mg>Fe>Na>Zn >Cu. The unsaturated fatty acid content was 96.71-96.94%, and the major fatty acids oleic acid and linoleic acid were present. Total sugar content was 15.00-26.17 mg glucose/g. The acidic polysaccharide content was 0.56-0.80 mg ${\beta}$-Dgalacturonic acid/g. These results showed the differences in the physicochemical characteristics of ginseng seeds with respect to cultivation location, cultivation year, and species.

Optimal Harvesting Time of Ginseng Seeds and Effect of Gibberellic Acid (GA3) Treatment for improving Stratification Rate of Ginseng (Panax ginseng C. A. Meyer) Seeds (인삼 종자의 개갑률 향상을 위한 적정 수확시기 및 GA3 처리 효과)

  • Kim, Young Chang;Kim, Young Bae;Park, Hong Woo;Bang, Kyong Hwan;Kim, Jang Uk;Jo, Ick Hyun;Kim, Kee Hong;Song, Beom Heon;Kim, Dong Hwi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.6
    • /
    • pp.423-428
    • /
    • 2014
  • This study was performed to identify optimal harvesting time of ginseng seeds and to examine the effect of $GA_3$ treatment for improvement of seed stratification rate. Ginseng seeds harvested from Land race, Chunpoong and Yunpoong cultivar in July 20 were tested for stratification rate. It was shown that stratification rates of land race, Yunpoong and Chunpoong cultivar were 94.1%, 93.1%, and 82.6%, respectively. Seeds of Chunpoong cultivar harvested 10-15 days later showed a comparable stratification rate to that of Land race, indicating that late harvest of Chunpoong seeds is beneficial for the increase of stratification rate. The higher stratification rate was found in mature seeds (92.3%) than immature seeds (37.8%), both of which were harvested in July 20. Stratification rate of mature seeds harvested in July 15 was 87.5%, demonstrating optimal harvesting time of ginseng seeds with higher stratification rate is after mid-July. An exponential growth of endosperms of ginseng seeds was observed from early June to mid-June and then slow growth was observed. There was no obvious growth of embryos from fertilization to mid-August. After the this time, embryos quickly grew until late October. Thus, appropriate stratification control is essential during the period (from early September to late October) in order to optimize embryo growth and development. While no increase of stratification rate was observed in seeds treated with 50 ppm of $GA_3$, significant increases were observed in seeds treated with 100 ppm of $GA_3$. At this concentration of $GA_3$, the stratification rate of Land race, Chunpoong and Yunpoong cultivar was 95.0%, 95.3%, and 96.5%, respectively.

Optimum Chilling Terms for Germination of the Dehisced Ginseng(Panax ginseng C. A. Meyer) Seed (개갑 인삼종자의 발아 적정 저온감응기간)

  • 권우생;이장호;이명구
    • Journal of Ginseng Research
    • /
    • v.25 no.4
    • /
    • pp.167-170
    • /
    • 2001
  • Experiments were conducted to study the optimum chilling period for breaking physiological dormancy of dehisced ginseng(Panax ginseng C. A. Meyer) seed. Embryo of ginseng seed is too small to be noticed with naked eyed on harvesting time. Embryo grew to half size of endosperm after seeds were stratified for 3 months. It takes 6 months for this embryo to reach the size enough for germination. And it grew faster indoors than outdoors. Dehisced ginseng seed with full-size embryo did not germinate at room temperature and required chilling treatment for 75days in outdoors and 90 days in cold chamber. While seed receiving sufficient chilling treatment were left to be in room temperature, the chilling effect decreased remarkably.

  • PDF

Rapid Somatic Embryogenesis and Plant Regeneration in American Ginseng: Effete of Auxins and Explants

  • Wang X.;Proctor J.T.A.;KrishnaRaj S.;Saxena P.K.;Sullivan J.A.
    • Journal of Ginseng Research
    • /
    • v.23 no.3 s.55
    • /
    • pp.148-163
    • /
    • 1999
  • The efficacy of three auxins, viz. 2,4-0, NAA and dicamba, were compared for the induction of somatic embryogenesis in American ginseng (Panax quinquefolium L.). Somatic embryos (SEs) formed on ginseng cotyledonary, zygotic embryo and shoot explants after 8 weeks of induction by the auxin stimuli. Significantly more somatic embryos were induced by culture of any of the ginseng explants on media supplemented with $5{\mu}M$ 2,4-0 than any other auxin treatment. Shoots derived from somatic embryos had the greatest regenerative potential and zygotic embryos the least. Explants generated from green (unstratified) seeds gave similar or higher frequency of embryogenesis as the explants derived from stratified seeds. Histological and SEM studies confirmed that the regenerimts were somatic embryos. Somatic embryos germinated and developed into normal plants in $3\~6$ months. About $10\%$ of plantlets from second generation SEs formed flowers within 10 weeks, particularly on media supplemented with $GA_3$ The development of a regeneration system for ginseng through somatic embryogenesis is a necessary first step for mass propagation and genetic improvement of American ginseng.

  • PDF

Effect of cryopreservation of ginseng (Panax ginseng C.A. Meyer) seeds on redox ratio of ascorbate and glutathione (인삼종자 초저온보존 후 Ascorbate 및 Glutathione의 산화환원 변화)

  • Baek, Hyung-Jin;Lee, Young-yi;Yoon, Mun-Seop;Song, Jae-young;Balaraju, Kotnala
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.81-81
    • /
    • 2019
  • Ginseng seeds are one of short-lived seeds species which loose their viability easily in the condition of conventional storage. Cryopreservation using liquid nitrogen (LN) has been recommended as a alternative storage for this kind of germplasm short lived or dessiccation-sensitive. This study was performed to find out whether cryopreservation could affect physiological change such as enzyme activity induced by reactive oxygen species. In this work, the redox ratio of ascorbate and glutathione were examined onto ginseng seedlings before and after LN storage of seeds for 1 day using spectrophotometer method. Reduced ascorbate (ASA) was increased while oxidized ascorbate (DHA) was decreased slightly for both after 1d-LN storage. And for glutathione also, reduced form (GSH) was increased while oxidized form (GSSG) was decreased slightly for both after 1d-LN storage. Consequently total phenol compound and ion leakage after LN storage showed no significant differences. Additionally root growth from the seeds after LN storage was not affected by ultra low temperature. From the above results, we may suggest that cryopreservation could be recommended for storage tool of ginseng seeds even with low viability also and expected to make slower seed aging process during preservation period through further study.

  • PDF

Effects of Gibberellic Acid and Alternating Temperature on Breaking Seed Dormancy of Panax ginseng C. A. Meyer (개갑된 인삼종자 휴면 조기타파에 미치는 GA3 및 변온처리 효과)

  • Lee, Jung Woo;Kim, Young Chang;Kim, Jang Uk;Jo, Ick Hyun;Kim, Kee Hong;Kim, Dong Hwi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.4
    • /
    • pp.284-293
    • /
    • 2016
  • Background: Developing new ginseng cultivars is a significant time-consuming process owing to the three years of growth required for ginseng to flower. To shorten the ginseng breeding process, it is necessary to establish rapid progression through each generation. In this study, we examined it was possible to rapidly break ginseng seed dormancy using gibberellic acid ($GA_3$) treatment and alternating temperature. Methods and Results: Seeds were obtained from local variety. Seeds were treated with either $GA_3$ at a concentration of $100mg/{\ell} $, constant temperature ($-2^{\circ}C$ and $2^{\circ}C$), alternating temperature ($2^{\circ}C$ followed by $-2^{\circ}C$, followed by $2^{\circ}C$) or a combination $GA_3$ and temperature treatment. Following experimental treatment, seeds were sown into trays and placed in a greenhouse. Low germination rates were observed in seeds that did not receive $GA_3$ treatment, which were similar following $2^{\circ}C$ and $-2^{\circ}C$ constant temperature treatment. Germination rates increased in proportion to $GA_3$ and more so when combined with alternating temperature treatment. In additon, stem and leaf lengths of the resulting ginseng plants were increased following $GA_3$ treatment, although no synergistic effect was observed with alternating temperature treatment. Conclusions: These results suggest that a combination $GA_3$ and alternating temperature treatment enhances ginseng seed germination, which can contribute to shortening the time required to progress through a single ginseng generation for breeding.