• 제목/요약/키워드: Panax genus

검색결과 34건 처리시간 0.02초

Non-clinical pharmacokinetic behavior of ginsenosides

  • Won, Hyo-Joong;Kim, Hyun Il;Park, Taejun;Kim, Hyeongmin;Jo, Kanghee;Jeon, Hyojin;Ha, Seo Jun;Hyun, Jung Min;Jeong, Aeri;Kim, Jung Sik;Park, Ye Jin;Eo, Yun Ho;Lee, Jaehwi
    • Journal of Ginseng Research
    • /
    • 제43권3호
    • /
    • pp.354-360
    • /
    • 2019
  • Ginsenosides, the major active ingredients of ginseng and other plants of the genus Panax, have been used as natural medicines in the East for a long time; in addition, their popularity in the West has increased owing to their various beneficial pharmacological effects. There is therefore a wealth of literature regarding the pharmacological effects of ginsenosides. In contrast, there are few comprehensive studies that investigate their pharmacokinetic behaviors. This is because ginseng contains the complicated mixture of herbal materials as well as thousands of constituents with complex chemical properties, and ginsenosides undergo multiple biotransformation processes after administration. This is a significant issue as pharmacokinetic studies provide crucial data regarding the efficacy and safety of compounds. Moreover, there have been many difficulties in the development of the optimal dosage regimens of ginsenosides and the evaluation of their interactions with other drugs. Therefore, this review details the pharmacokinetic properties and profiles of ginsenosides determined in various animal models administered through different routes of administration. Such information is valuable for designing specialized delivery systems and determining optimal dosing strategies for ginsenosides.

인삼 토양 미생물 Cellulosimicrobium sp. Gsoil 235의 배지조성에 따른 Ginsenoside $Rb_1$ 전환 (Conversion of Ginsenoside $Rb_1$ by Ginseng Soil Bacterium Cellulosimicrobium sp. Gsoil 235 According to Various Culture Broths)

  • 나주련;김유진;김세화;김호빈;심주선;김세영;양덕춘
    • 한국미생물·생명공학회지
    • /
    • 제37권1호
    • /
    • pp.55-61
    • /
    • 2009
  • 인삼 근권에 존재하는 토양 미생물중 esculin agar법을 이용하여 $\beta$-glucosidase를 생산하는 균주를 분리하고, 다시 ginsenoside $Rb_1$을 선택적으로 분해하는 균주 Gsoil 235를 선발 및 동정하였다. 16S rRNA 염기서열을 sequencing한 후, genebank에서 가장 가까운 type strain을 결정하여 유연 관계를 분석한 결과 Cellulosimicrobium 속의 funkei ATCC BAA-$886^T$(AY501364)와 99.7% 일치하는 균주임을 확인하였다. TSB, LB, NB등 3종류의 배지에서 균의 생장은 접종 후 12-24 시간에서 가장 잘 자라며, TSB>LB>NB의 순으로 잘 자라는 것을 알 수 있었다. ginsenoside $Rb_1$과 8, 24, 48시간 동안 반응시킨 후 TLC로 분석한 결과 NB>LB>TSB순으로 $Rb_1$ 분해 활성이 뛰어나 배지의 생장과 대조적인 결과를 얻었다. 반응시간이 증가할수록 Rd를 포함한 minor ginsenoside의 생성이 증가하였으며, 특히 다른 배지에 비해 균주 생장속도가 상대적으로 낮은 NB는 48시간 후 $Rb_1$을 거의 분해하여 강한 효소 활성을 확인할 수 있었다.

Ginsenoside Re inhibits pacemaker potentials via adenosine triphosphate-sensitive potassium channels and the cyclic guanosine monophosphate/nitric oxide-dependent pathway in cultured interstitial cells of Cajal from mouse small intestine

  • Hong, Noo Ri;Park, Hyun Soo;Ahn, Tae Seok;Kim, Hyun Jung;Ha, Ki-Tae;Kim, Byung Joo
    • Journal of Ginseng Research
    • /
    • 제39권4호
    • /
    • pp.314-321
    • /
    • 2015
  • Background: Ginseng belongs to the genus Panax. Its main active ingredients are the ginsenosides. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the gastrointestinal (GI) tract. To understand the effects of ginsenoside Re (GRe) on GI motility, the authors investigated its effects on the pacemaker activity of ICCs of the murine small intestine. Methods: Interstitial cells of Cajal were dissociated from mouse small intestines by enzymatic digestion. The whole-cell patch clamp configuration was used to record pacemaker potentials in cultured ICCs. Changes in cyclic guanosine monophosphate (cGMP) content induced by GRe were investigated. Results: Ginsenoside Re ($20-40{\mu}M$) decreased the amplitude and frequency of ICC pacemaker activity in a concentration-dependent manner. This action was blocked by guanosine 50-[${\beta}-thio$]diphosphate [a guanosine-5'-triphosphate (GTP)-binding protein inhibitor] and by glibenclamide [an adenosine triphosphate (ATP)-sensitive $K^{+}$ channel blocker]. To study the GRe-induced signaling pathway in ICCs, the effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) and RP-8-CPT-cGMPS (a protein kinase G inhibitor) were examined. Both inhibitors blocked the inhibitory effect of GRe on ICC pacemaker activity. L-NG-nitroarginine methyl ester ($100{\mu}M$), which is a nonselective nitric oxide synthase (NOS) inhibitor, blocked the effects of GRe on ICC pacemaker activity and GRe-stimulated cGMP production in ICCs. Conclusion: In cultured murine ICCs, GRe inhibits the pacemaker activity of ICCs via the ATP-sensitive potassium ($K^{+}$) channel and the cGMP/NO-dependent pathway. Ginsenoside Re may be a basis for developing novel spasmolytic agents to prevent or alleviate GI motility dysfunction.

Effect of Soluble-silicate or Chitosan Foliar Spray on Ginseng Cultivated in Blue-white Plastic Film House

  • Seo, Sang Young;Cho, Jong hyeon;Kim, Chang Su;Kim, Hyo Jin;Kim, Dong Won;An, Min Sil;Jang, In Bae
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.46-46
    • /
    • 2019
  • The experiments were performed in the Jinan (elevation: 300 meters above sea level), Jeollabuk-do. Seedlings (n = 63 per $3.3m^2$) of ginseng cultivar (Cheonpung, Yeonpung) were planted on April 10, 2015. Shading material of plastic film house was blue-white film. Before the Planting seedling, silicate (3 kg/10 a) or chitosan (40 kg/10 a) was fertilized and foliar sprayed on the leaves 1000 times dilution solution once a month from May to September every year. The growth results of 5-year old ginseng surveyed in 2018 are as follows. The average air temperature in the plastic film house was the highest at $26.6^{\circ}C$ and $26.5^{\circ}C$ in July and August, respectively, and the highest temperature was $40.5^{\circ}C$ in July. The maximum daily temperature of $35^{\circ}C$ or more was 30 days, with the average soil temperature being $24.9^{\circ}C$ in August. The chemical properties of the test soil are as follows. pH was 6.4~6.9 level and EC was 0.35~0.46 dS/m. The organic matter content was 33.5~41.4 g/kg, and available-P content was 251.9~306.8 mg/kg. Exchangeable cations contents, such as K, Ca and Mg were all the appropriate ranges. The soil microbial density surveyed by the dilution plate method was 10~50 times higher than that of control (Non-treatment) and actinomycete density was 3~6 times higher. Pathogens of the genus Fusarium by Metagenome analysis decreased 91.3% and 68.2% respectively in the foliar sprayed of chitosan and soluble-silicate. The light intensity (PAR) in the blue-white film plastic film house gradually increased until July and then decereased, with the average of light intensity in March-October was $120.3umol/m^2/s$. The growth of aerial parts such as plant height and stem length was better than non-sprayed group in silicate or chitosan treatments and Yeonpung cultivar was superior to the Cheonpung cultivar. The SPAD value was higher in Yeonpung cultivar foliar sprayed with soluble-silicate. The growth of underground parts such as root length and taproot length were better in chitosan and soluble-silicate treatment than control, especially in Yeonpung cultivar foliar sprayed with chitosan was good in taproot length and taproot diameter, and fresh weight of root was 60.1 g. Ginsenoside contents were 24.9 mg/g and 22.4 mg/g, in the Cheonpung cultivar foliar sprayed with soluble-silicate or chitosan respectively, 28% and 15% higher than control (19.5 mg/g). The incidence of disease by Alteraria panax and Botrytis cinerea was 3~9% and 4~9%, respectively. High temperature damage rate was 3~5%.

  • PDF