• 제목/요약/키워드: Palm kernel

검색결과 72건 처리시간 0.021초

미분탄 스월버너에서 PKS와 석탄 혼소가 화염 구조에 미치는 영향 (Effect of Co-firing PKS and Coal on Flame Structure in a Pulverized Coal Swirl Burner)

  • 신민호;성연모;최민성;이광수;최경민;김덕줄
    • 한국연소학회지
    • /
    • 제21권4호
    • /
    • pp.30-38
    • /
    • 2016
  • Flame structure of co-firing coal and palm kernel shell (PKS) was investigated in a pulverized coal swirl burner by particle image velocimetry (PIV). The pulverized coal swirl flame is operated with a PKS blending ratio of 10%, 20%, and 30%. For all operating conditions, flame structures such as internal recirculation zone (IRZ), outer recirculation zone (ORZ), and exhaust tube vortex (ETV) were observed. In the center of flame, the strong velocity gradient is occurred at the stagnation point where the volatile gas combustion actively takes place and the acceleration is increased with higher PKS blending ratio. OH radical shows the burned gas region at the stagnation point and shear layer between IRZ and ORZ. In addition, OH radical intensity increases for a co-firing condition because of high volatile matter from PKS. Because the volatile gas combustion takes place at lower temperature, co-firing condition (more than 20%) leads to oxygen deficiency and reduces the combustibility of coal particle near the burner. Therefore, increasing PKS blending ratio leads to higher OH radical intensity and lower temperature.

국내 유통 바이오디젤 및 바이오디젤 혼합연료의 산화열화 연구 (A Study on Evaluation of Oxidation Degradation of Bidiesel and Biodiesel Blended Fuel Distributing in Domestic)

  • 민경일;임의순;나병기;정충섭
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.135-143
    • /
    • 2013
  • In this study, we suggested effective countermeasure of biodiesel oxidation problems by investigating the oxidation degradation of biodiesels derived from variable resources and the level of oxidation stability of current distributing biodiesel blended fuels (2%) in Korea, and oxidation stability change according to storage time (for 3 month) and biodiesel blending ratio (2, 5, 7, 10%). By the composition analysis results of biodiesel from various resources which are possible to distribute in Korea, the biodiesel from animal fat has poor oxidation stability and cold performance, while the biodiesel from coconut and palm kernel which are considered as future potential raw material showed good oxidation stability and cold performance. The oxidation stability level of current distributing biodiesel blended fuels in Korea was excellent with showing over 30 hours (average 68 hours) stability, but the oxidation stability of the blended fuel with animal fat biodiesel having poor oxidation property (1.22 hours) was rapidly decreased to below 32 hours by mixing only 2%. Therefore, we have to pay attention to quality control of oxidation property, because the oxidation stability problem can be caused by increasing biodiesel blending ratio and diversifying raw materials those have worse property.

테녹시캄의 피부 흡수율을 증진시키기 위한 에탄올아민염의 제조 (Preparation of Tenoxicam Salt with Ethanolamine to Enhance the Percutaneous Absorption)

  • 곽병태;전명관;최후균
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권3호
    • /
    • pp.169-174
    • /
    • 2006
  • The aim of this work was to prepare tenoxicam-ethanolamine salt with improved physicochemical properties for transdermal application. Tenoxicam-ethanolamine salt was prepared in methylene chloride and its physicochemical properties were investigated by DSC and FT-lR. The broad peak of tenoxicam around 3600-3200 $cm^-1$ was shifted to lower wavenumber and more broadened. The characteristic endothermic melting peak of tenoxicam appeared at $223^{\circ}C$. The melting peak of tenoxicam-ethanolamine salt was shifted to $159^{\circ}C$. In contrast to relatively small difference in the partition coefficients of tenoxicam and the tenoxicam-ethanolamine salt, large difference in aqueous solubility was observed. $Crovol^{\circledR}$ PK4O (PEG-12 palm kernel glycerides) provided the highest skin flux for both compounds. The order of the enhancing effect of the various vehicles tested was similar for tenoxicam and tenoxicam-ethanolamine salt, which indicated that their enhancing mechanism for tenoxicam and tenoxicam-ethanolamine salt is similar. Tenoxicam-ethanolamine salt had a higher skin flux than tenoxicam by 1.2- to 31.7-fold, depending on the vehicles used. It is suggested that the vehicles with medium HLB value, 1 double bond, and lower ethylene oxide chain length have a better ability to modify the permeability of the stratum corneum and to promote the effective penetration of tenoxicam and tenoxicam-ethanolamine salt.

발전용 바이오매스 연료(WP·EFB·PKS)의 열분해 온도 조건에 따른 반탄화 및 염소 방출 특성에 관한 연구 (A Study on the Characteristics of Torrefaction and Chlorine Release According to the Mild Pyrolysis Temperature Conditions of Biomass Fuels (WP·EFB·PKS) for Power Generation)

  • 김지훈;박재흔;최재현;전충환
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.683-690
    • /
    • 2017
  • Wood pellet (WP), empty fruit bunch (EFB) and palm kernel shell (PKS) which are biomass fuels for power generation are selected to study the characteristics of torrefaction process. These biomass fuels are torrefied at $220^{\circ}C$, $250^{\circ}C$, and $280^{\circ}C$. The heating value of biomass fuels is increased depending on the torrefaction temperature. However, due to energy yield decline, it is not always desirable to torrefy biomass at higher temperature. Considering the mass yield and energy yield after torrefaction, the most proper temperature conditions for torrefaction of WP is $250-280^{\circ}C$ and for EFB, PKS are $220-250^{\circ}C$. Additionally, to investigate the phenomenons of chlorine release during torrefaction process, Ion Chromatography (IC) method was used. In the case of EFB and PKS torrefied at $300^{\circ}C$, the chlorine component has been reduced by 97.5% and 95.3% compared to the raw biomass, respectively. In conclusion, torrefied biomass can be used as alternative fuels in replacement of coals for both aspects of heating value and chlorine corrosion problems.

Estimation of Ruminal Degradation and Intestinal Digestion of Tropical Protein Resources Using the Nylon Bag Technique and the Three-step In vitro Procedure in Dairy Cattle on Rice Straw Diets

  • Promkot, C.;Wanapat, Metha;Rowlinson, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권12호
    • /
    • pp.1849-1857
    • /
    • 2007
  • The experiment was carried out using fistulated multiparous Holstein Friesian crossbred (75% Holstein Friesian and 25% Red Sindhi) dairy cows in their dry period fed on untreated rice straw to evaluate the nutritive value of local protein feed resources using the in sacco method and in vitro pepsin-pancreatin digestion. Experimental feeds were cottonseed meal (CSM); soybean meal (SBM); dried brewery's grains (DBG); palm kernel meal (PSM); cassava hay (CH); leucaena leaf meal (LLM). Each feedstuff was weighed into duplicate nylon bags and incubated in each of the two rumen fistulated cows for 0, 2, 4, 8, 16, 24, and 48 h. Rumen feed residues from bags of 16 h incubation were used for estimation of lower gut digestibility by the technique of in vitro pepsin-pancreatin digestion. Ruminal ammonia-nitrogen ($NH_3-N$) concentrations did not differ between treatments or time with a mean of 5.5 mg%. Effective degradability of DM of CSM, SBM, DBG, PSM, CH and LLM were 41.9, 56.1, 30.8, 47.0, 41.1 and 47.5%, respectively. Effective degradabilities of the CP in feedstuffs were 49.6, 59.2, 40.9, 33.5, 47.3 and 65.0% for the respective feedstuffs. The CP in vitro pepsin-pancreatin digestibility as ranked from the highest to the lowest were SBM, CSM, LLM, CH, DBG, PSM, respectively. The intestinal and total tract digestion of feedstuffs in the current study were relatively lower than that obtained from previous literature. The results of this study indicate that SBM and LLM were highly degradable in the rumen, while CH, CSM and DBG were less degradable and, hence resulted in higher rumen undegradable protein. Soybean meal and LLM could be used to improve rumen ecology whilst CH, CSM and DBG could be used as rumen by-pass protein for ruminant feeding in the tropics.

미분탄화력발전에서의 바이오매스 혼소 시 플랜트 성능특성 평가 (Evaluation of Plant Performance during Biomass Co-firing in Pulverized Coal Power Plant)

  • 문태영;;이은도;이정우;양원
    • 한국연소학회지
    • /
    • 제19권3호
    • /
    • pp.8-17
    • /
    • 2014
  • The aims of this research were to evaluate effects of biomass co-firing to pulverized coal power plants and the variation of co-firing ratios on the plant efficiency related to power consumption of auxiliary system and flue gas characteristics such as production and component by process simulation based on the existing pulverized coal power plant. In this study, four kinds of biomass are selected as renewable fuel candidates for co-firing: wood pellet(WP), palm kernel shell(PKS), empty fruit bunch(EFB) and walnut shell(WS). Process simulation for various biomass fuels and co-firing ratios was performed using a commercial software. Gas side including combustion system and flue gas treatment system was considering with combination of water and steam side which contains turbines, condenser, feed water heaters and pumps. As a result, walnut shell might be the most suitable as co-firing fuel among four biomass since when 10% of walnut shell was co-fired with 90% of coal on thermal basis, flue gas production and power consumption of auxiliary systems were the smallest than those of other biomass co-firing while net plant efficiency was relatively higher than those of other biomass co-firing. However, with increasing walnut shell co-firing ratios, boiler efficiency and net plant efficiency were expected to decrease rather than coal combustion without biomass co-firing.

Amino acid digestibility in plant protein sources fed to growing pigs

  • Son, Ah Reum;Park, Chan Sol;Park, Kyu Ree;Kim, Beob Gyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권11호
    • /
    • pp.1745-1752
    • /
    • 2019
  • Objective: The objective was to determine standardized ileal digestibility (SID) of amino acids (AA) in 11 plant protein sources fed to growing pigs. Methods: Eleven feed ingredients used were sesame meal, two sources of soybean meal (SBM) produced in the Republic of Korea, a source of SBM produced in India, high-protein distillers dried grains (HPDDG), perilla meal, canola meal, copra meal, corn germ meal, palm kernel expeller, and tapioca distillers dried grains (TDDG). Experimental diets were prepared to contain each test ingredient as a sole source of AA, and a nitrogen-free diet was also prepared to estimate the basal ileal endogenous losses of AA. Twelve barrows surgically fitted with T-cannulas at the distal ileum with an initial body weight of 29.0 kg (standard deviation = 3.0) were individually housed in metabolism crates equipped with a feeder and a nipple drinker. A $12{\times}9$ incomplete Latin square design was employed with 12 experimental diets, 12 animals, and 9 periods. After a 5-d adaptation period, ileal digesta were collected on d 6 and 7 in each experimental period. Results: Values for apparent ileal digestibility of most indispensable AA in three sources of SBM were greater compared with other test ingredients except HPDDG and canola meal (p<0.05). Pigs fed diets containing SBM sources had also greater SID of most indispensable AA compared with those fed diets containing other test ingredients (p<0.05) except for HPDDG and canola meal. There was no difference in the apparent ileal digestibility and SID of AA among sources of SBM. The TDDG had the least value for the SID of methionine among test ingredients (p<0.05). Conclusion: The SID of most AA in SBM, HPDDG, and canola meal were greater than those in sesame meal, perilla meal, copra meal, and TDDG.

열병합 발전소용 목질계 바이오매스의 연소 특성에 관한 연구 (A Study on Combustion Characteristics of Wood Biomass for Cogeneration Plant)

  • 류정석;김기석;박수진
    • 공업화학
    • /
    • 제22권3호
    • /
    • pp.296-300
    • /
    • 2011
  • 본 연구에서는 열병합 발전소의 원료로서 목질계 바이오매스로 임목 부산물, 폐목재, 야자수 부산물, 야자수 껍질의 연소 특성을 조사하기 위하여 열중량 분석기를 이용하여 연소 실험을 수행하였다. 목질계 바이오매스의 비교군으로는 일반적인 석탄을 사용하였다. 열중량 분석기 결과로부터, 목질계 바이오매스의 연소는 석탄과 비교하여 낮은 온도인 $280^{\circ}C$에서 $420^{\circ}C$ 구간에서 가장 활발한 연소반응을 보였음을 확인 할 수 있었다. 열중량분석에 의하여 측정된 활성화 에너지에 있어서 임목 부산물은 석탄 및 기타 목질계 바이오매스와 비교하여 가장 낮은 활성화 에너지 값을 나타내었으며, 또한 목질계 바이오매스의 경우 석탄과 비교하여 연소반응속도가 크게 증가함을 확인 할 수 있었다. 이는 목질계 바이오매스의 높은 연소개시 속도를 보이는 것을 나타내며, 이러한 결과는 석탄과 비교하여 낮은 비등점의 휘발분을 많이 포함하는 목질계 바이오매스의 특성에 기인하는 것으로 판단된다.

Effect of extracting solvents on physicochemical properties of vegetable seed oils and their suitability for industrial applications

  • Qeency Etim Essien;Michael Akomaye Akpe;Ofonime Okon Udo;Collins Irechukwu Nwobodo
    • 한국식품저장유통학회지
    • /
    • 제31권4호
    • /
    • pp.554-564
    • /
    • 2024
  • The effects of extracting solvents on the physicochemical properties of vegetable oils extracted from four oil seed plants, namely Dennettia tripetala, Dacryodes edulis, Cola rostrata, and Persea americana, were studied. Vegetable oils were extracted using the Soxhlet method. The oils were used for determining % yield, acid value (AV), iodine value (IV), saponification value (SV), electrical conductivity (EC), and pH. The results revealed that the range of the mean % yield of oils extracted using hexane, carbon tetrachloride (CCl4), petroleum ether, acetone, and methanol, respectively, were 7.5-12.0, 9.0-22.0, 7.5-27.5 and 12.0-37.5 for the four oil Seeds respectively. Mean AVs of oils in mg KOH/g across the solvents were 3.1-3.7, 3.1-3.8, 2.5-3.9 and 2.4-2.8 for Cola rostrata, Dacryodes edulis, Dennettia tripetala and Persea americana respectively. Mean IVs of oils in gI2/100 g across the solvents were 33.25-33.97, 33.06-33.35, 32.06-33.76 and 33.00-34.00 for the four oil seeds, respectively. Mean SVs in mg KOH/g across the solvents were 191.00-197.44, 190.74-198.31, 194.11-202.52, and 182.23-199.44, respectively. Mean EC values ranged 0.31-0.32, 0.30-0.33, 0.30-0.33, and 0.31-0.32 µS/cm across the solvents, respectively. Mean pH values ranged from 6.1-6.4, 4.6-6.3, 6.2-6.4, and 6.1-6.3 across the solvents for the oils, respectively. The AVs of the oils suggest that they are edible oils, the IVs classify the oils as non-drying oils suitable for paint making, and SVs reveal that the oils are good for soap making. Hexane, petroleum ether, and CCl4 are suitable for oil extraction industrially, while D. edulis, D. tripetala, and P. Americana oils are economically viable oil resources due to their high percentage yield, SV and IV.

다양한 바이오매스의 분쇄도 실험을 통한 미분탄 화력발전 적용가능성 연구 (Applicability of Various Biomasses to Pulverized Coal Power Plants in Terms of their Grindability)

  • 강별;이용운;류창국;양원
    • 청정기술
    • /
    • 제23권1호
    • /
    • pp.73-79
    • /
    • 2017
  • 기후 변화 대응을 위한 온실가스 감축 측면에서, 석탄화력발전소에서 바이오매스 사용량은 계속하여 증가되어 왔다. 파리 협정 이후 온실가스 감축 목표치가 더욱 구체화되면서 바이오매스 사용은 급격히 더 많아질 것으로 예상된다. 미분탄 석탄 화력발전에서 바이오매스 혼소시 가장 큰 문제점 중 하나는 바이오매스의 미분성이 석탄에 비해 훨씬 낮다는 것으로, 이를 해결하기 위해 가장 먼저 바이오매스의 미분성 측정 방법을 확립하는 작업이 필요하다. 석탄의 경우 HGI (hardgrove grindability index)측정 장치를 통해 분쇄도 측정이 가능하여 이를 표준으로 삼고 있지만, 바이오매스의 경우 표준 측정 방법이 확립되어있지 않다. 본 연구에서는 볼 밀과 입자 크기별 분포량을 이용한 석탄과 바이오매스의 분쇄 실험을 진행하였다. 실험에는 석탄 1종과 바이오매스 6종을 사용하였다. 분쇄시간에 따른 입자 분포량을 비교하고, $75{\mu}m$ 이하 입자 분포량으로 분쇄도를 평가하였다. 실험결과 반탄화 바이오매스 TBC (torrefied biomass chip)와 TWP (torrefied wood chip)는 발전용 사용적합 기준에 대해 대략적으로 70%의 값을 나타냈다. 다른 바이오매스들의 경우 반탄화 바이오매스와 비교했을 때 분쇄성이 훨씬 더 낮은 결과를 보였다. TBC와 TWP는 수분이 감소하고 섬유질 구조가 분해되는 반탄화 과정을 통해 분쇄가 향상되었다. 또한 분쇄도가 높은 반탄화 바이오매스가 소모전력이 낮게 측정되었다. 본 연구를 통해 바이오매스의 석탄화력발전 적용을 위한 표준화 작업의 기초 자료들을 확보할 수 있다.