• Title/Summary/Keyword: Palladium recovery

Search Result 20, Processing Time 0.023 seconds

Effects of Process Variables on The Electrochemical Recovery of Palladium in A HCl Solution

  • Kim, Min-Seuk;Lee, Jae-Chun;Kim, Won-Baek
    • Resources Recycling
    • /
    • v.14 no.1
    • /
    • pp.55-63
    • /
    • 2005
  • This study investigated the electrochemical recovery of palladium in a HCl solution that is used for palladium leaching. The high acidity of HCl solution and the low concentration of Pd ions increased the cathodic overpotential and reduced the limiting current density. Lowering the current density produced dense deposits; however, they were under high tensile stress. Raising the temperature affected both the densification and the stress, which enabled the attainment of dense Pd deposits under low stress. Lowering the current density and raising the temperature up to 70$^{\circ}C$ was recommended for the recovery of palladium as sound bulk Pd deposits. Current efficiency was over 85% at the initial stage of recovery may decrease the current efficiency, since a low Pd ion concentration results in a low limiting current density.

Effects of process variables on morphology of palladium metal deposit in hydrochloric acid medium

  • kim Min-Seuk;Lee Jae-Chun;Kim Won-Back;Jeong Jin-Ki;Nam Chul-Woo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.642-647
    • /
    • 2003
  • Palladium is widely used for several applications and recovery of palladium from secondary sources becomes increasingly important since palladium is one of maldistributed platinum group metals. Electrochemical recovery of dense palladium metal sheet from Pd leaching solution is a simple and easily controlled method. The surface morphology of the recovered Pd metal was significantly affected by current density and temperature. Dense deposit morphology was in higher stress state regardless of preparation condition under $55^{\circ}C$. Rising temperature up to $70^{\circ}C$ had a stress releasing effect besides densification of Pd deposit.

  • PDF

Recovery of Palladium from a Mixture of Pt, Pd and Rh by Solvent Extraction

  • Kim, berly S. Svalstad;Kim, Nam-Soo;Kenneth N. Han
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.482-488
    • /
    • 2001
  • Platinum group metals (pgm) are useful to many industries such as chemical, dental and medical, petroleum, refining, electrical and electronic, and automotive. Researchers at the South Dakota School of Mines and Technology and PGM Recovery Ltd. have developed jointly an environmentally sound and metallurgically efficient process for extracting these metals from secondary sources. Once these metals have been dissolved in the leach liquor, the individual metals mainly platinum, palladium, and rhodium, should be separated in order to recover the individual metals with high purity. During this investigation, solvent extraction has been chosen as the method used to achieve the separation and extraction of platinum, palladium, and rhodium from the leach liquor. There were three solutions used throughout this procedure: 1) Synthetic solution (200 ppm Pt 80 ppm Pd 20 ppm Rh; 300 ppm Pt, 180 ppm Pd 50 ppm Rh), and 2) Auto catalyst leach liquors (100 ppm Pt, 30 ppm Pd, 20 ppm Rh). The solvents investigated included Lix 84(2-hydroxy-5-nonylacetonphenone oxime in a mixture with 5-dodecylsalicyloxime), Lix 84-I, ACORGA CLX-50 (diester of pyridine 3,5 dicarboxylic acid), and di-hexyl sulfide. The extraction values achieved using ACORGA CLX-50, Lix 84, and Lix 84-I were respectively Pt (25%, 0% 0%), Pd (100%, 99.8%, 95.3%), and Rh (99.1%, 35.5%, 4.25%). The stripping processes for the Lix 84, and Lix 84-I were proven to be more involved than others. The solutions were required to be simultaneously heated and stirred. The percentages acquired through these processes yielded unsatisfactory results. The stripping procedure for the ACORGA CLX-50 was easier to execute, yet the percentage recovered from this process was also unsatisfactory. Overall the di-hexyl sulfide has proved to be the most successful organic for this procedure. The average percent extracted for palladium was excellent with 99.9% - 100% with very little Platinum and rhodium extracted. The ability of stripping palladium in ammonia solution was also found to be excellent.

  • PDF

Determination of Palladium in Water Samples Using Cloud Point Extraction Coupled with Laser Thermal Lens Spectrometry

  • Han, Quan;Huo, Yanyan;Yang, Na;Yang, Xiaohui;Zhai, Yunhui;Zhang, Qianyun
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.407-412
    • /
    • 2015
  • A preconcentration procedure for determination of palladium by laser thermal lens spectrometry (TLS) is proposed. It is based on cloud point extraction of palladium(II) ions as 2-(3,5-dichloro-2-pyridylazo)-5-dimethylaminoaniline (3,5-diCl-PADMA) complexes using octylphenoxypolyethoxyethanol (Triton X-114) as surfactant. The effects of various experimental conditions such as pH, concentration of ligand and surfactant, equilibration temperature and time on cloud point extraction were studied. Under the optimized conditions, the calibration graph was linear in the range of 0.15~6 ng mL−1, and the detection limit was 0.04 ng mL−1 with an enrichment factor of 22. The sensitivity was enhanced by 846 times when compared with the conventional spectrophotometric method. The recovery of palladium was in the range of 96.6%~104.0%. The proposed method was applied to the determination of palladium in water samples.

Room-temperature synthesis of cobalt nanoparticles and their use as catalysts for Methylene Blue and Rhodamine-B dye degradation

  • Mondal, Arijit;Mondal, Asish;Mukherjee, Debkumar
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.67-79
    • /
    • 2015
  • Air stable nanoparticles were prepared from cobalt sulphate using tetra butyl ammonium bromide as surfactant and sodium borohydride as reductant at room temperature. The cobalt nanocolloids in aqueous medium were found to be efficient catalysts for the degradation of toxic organic dyes. Our present study involves degradation of Methylene Blue and Rhodamine-B using cobalt nanoparticles and easy recovery of the catalyst from the system. The recovered nanoparticles could be recycled several times without loss of catalytic activity. Palladium nanoparticles prepared from palladium chloride and the same surfactant were found to degrade the organic dyes effectively but lose their catalytic activity after recovery. The cause of dye colour discharge by nanocolloids has been assigned based on our experimental findings.

A Study on the Electrolytic Process for Palladium Separation from Recovered Crude Metal of Electronic Waste (전자폐기물에서 회수된 조금속으로부터 팔라듐 분리를 위한 전해공정에 관한 연구)

  • Park, Sung Cheol;Han, Chul Woong;Kim, Yong Hwan;Jung, Yeon Jae;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.76-82
    • /
    • 2021
  • The separation of palladium from crude metal, which is obtained from electronic waste using pyrometallurgy was achieved through electrolysis. This was done to recover high-purity copper. The oxidation potentials of these metals are a fundamental part of the analysis of electrolytic separation of palladium and impurity metals. To achieve this, copper, iron, and nickel were dissolved in the electrolyte, and palladium and aluminum were found to be recoverable from anode slime. During the electrolysis for palladium separation, palladium was present in the anode slime and was obtained with a recovery of 97.46 % indicating almost no loss. 4N-grade copper was recovered from the electrodeposition layer at the cathode.

Implantation of portable hydrogen alarm system based on palladium coated single mode optical fiber sensor (팔라듐이 코팅된 단일모드 광섬유 센서를 이용한 수소 경보 시스템 구현)

  • Mun, Nam-Il;Yang, Byung-Cheol;Kim, Kwang-Taek;Kim, Tae-Un
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.269-273
    • /
    • 2009
  • In this paper, a study on a portable hydrogen alarm system based on the palladium coated single mode fiber sensor has been reported. The fabricated hydrogen sensor exhibited 0.14 dB, 0.41 dB and 0.54 dB optical intensity variation when it was exposed by the nitrogen and hydrogen mixed gas containing 0.5 %, 1 % and 4 % of the hydrogen concentration, respectively. The fabricated sensor exhibited 20 second of response time and 120 second of recovery time for 4 % hydrogen containing gas. The fiber optics layout and software algorithm for detection of hydrogen leakage have been presented. The implanted portable hydrogen alarm system successfully generated an alarm signal when a 4 % hydrogen containing gas was leaked out.

Performance Enhancement by Adaptation of Long Term Chronoamperometry in Direct Formic Acid Fuel Cell using Palladium Anode Catalyst

  • Kwon, Yong-Chai;Baik, S.M.;Han, Jong-Hee;Kim, Jin-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2539-2545
    • /
    • 2012
  • In the present study, we suggest a new way to reactivate performance of direct formic acid fuel cell (DFAFC) and explain its mechanism by employing electrochemical analyses like chronoamperometry (CA) and cyclic voltammogram (CV). For the evaluation of DFAFC performance, palladium (Pd) and platinum (Pt) are used as anode and cathode catalysts, respectively, and are applied to a Nafion membrane by catalyst-coated membrane spraying. After long DFAFC operation performed at 0.2 and 0.4 V and then CV test, DFAFC performance is better than its initial performance. It is attributed to dissolution of anode Pd into $Pd^{2+}$. By characterizations like TEM, Z-potential, CV and electrochemical impedance spectroscopy, it is evaluated that such dissolved $Pd^{2+}$ ions lead to (1) increase in the electrochemically active surface by reduction in Pd particle size and its improved redistribution and (2) increment in the total oxidation charge by fast reaction rate of the Pd dissolution reaction.

Separation of Goid, Palladium and Platinum in Chromite by Anion Exchange Chromatography for Inductively Coupled Plasma Atomic Emission Spectrometric Analysis

  • Choe, Gwang Sun;Lee, Chang Hyeon;Park, Yeong Jae;Jo, Gi Su;Kim, Won Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.801-806
    • /
    • 2001
  • A study has been carried out on the separation of gold, iridium, palladium, rhodium, ruthenium and platinum in chromite samples and their quantitative determination using inductively coupled plasma atomic emission spectrometry (ICP-AES). The dissolution condition of the minerals by fusion with sodium peroxide was optimized and chromatographic elution behaviour of the rare metals was investigated by anion exchange chromatography. Spectral interference of chromium, a matrix of the minerals, was investigated on determination of gold. Chromium interfered on determination of gold at the concentration of 500 mg/L and higher. Gold plus trace amounts of iridium, palladium, rhodium and ruthenium, which must be preconcentrated before ICP-AES was separated by anion exchange chromatography after reducing Cr(Ⅵ) to Cr(III) by H2O2. AuCl4- retained on the resin column was selectively eluted with acetone- HNO3-H2O as an eluent. In addition, iridium, palladium, rhodium and ruthenium remaining on the resin column were eluted as a group with concentrated HCl. However, platinum was eluted with concentrated HNO3. The recovery yield of gold with acetone-HNO3-H2O was 100.7 ${\pm}2.0%$, and the yields of palladium and platinum with concentrated HCl and HNO3 were 96.1 ${\pm}1.8%$ and 96.6 ${\pm}1.3%$, respectively. The contents of gold and platinum in a Mongolian chromite sample were 32.6 ${\pm}$ 2.2 ${\mu}g$/g and 1.6 $\pm$ 0.14 ${\mu}g$/g, respectively. Palladium was not detected.

The Extraction of Palladium by Polyurethane Foam impregnated with ${\beta}$-Diphenylglyoxime (${\beta}$-디페닐글리옥심으로 침윤시킨 폴리우레탄 포움에 의한 팔라듐의 추출)

  • Sam Woo Kang;Seung Seok Lee
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.268-272
    • /
    • 1983
  • Polyurethane foam impregnated with ${\beta}$-diphenylglyoxime has been applied to the extraction of palladium(II) from platinum(IV) and nickel(II) in aqueous solution. Palladium(II) is quantitatively extracted from $0.01{sim}0.05M$ HCl. On the other hand, platinum(Ⅳ) was slightly extracted and nickel(II) was not found to be extraction in the same experimental condition. Based on the results obtained, the selective separation, removal and recovery of Pd(II) from Pt(IV) or Ni(II) was possible by batch or elution method.

  • PDF