• Title/Summary/Keyword: Paleo-tidal Current

Search Result 5, Processing Time 0.018 seconds

A Revisit to the Myungryang Naval Battle through Hindcasting Tidal Currents and Tides (명량해전 당일 울돌목 조류.조석 재현을 통한 해전 전개 재해석)

  • Byun, Do-Seong;Lee, Min-Woong;Lee, Ho-Jung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.189-197
    • /
    • 2011
  • As a multidisciplinary study encompassing oceanography and history, we have attempted to reanalyze the course of a historical navel battle, Myungryang Naval Battle(September 16th, 1597 according to the lunar calendar) through hindcasting the paleo-tidal currents and -tides(PTC). Firstly, we conducted harmonic analysis using 6-month current data observed at Uldolmok and 1-year elevation data provided by Korea Ocean Research and Development Institute in order to understand their characteristics and to hindcast the PTC. Observation results show that Uldolmok, ~300m wide, relatively narrow channel, is characterized by a flood-dominant mixed mainly semidiurnal tidal regime induced by relatively-strong shallow water constituents, showing closely a standing wave type of tidal current. Further, we hindcasted PTC on the day of Myungryang Naval Battle. Our results were compared and discussed with results(time and speeds of maximum(flood and ebb) currents and high and low water times) of the previous studies estimated from different methods. Lastly, we reconstruct the course of the event of Myungryang Naval Battle recorded in the Admiral Sun-Sin Yi's War Diary(Nangjung Iigi in Korean) based on our hindcasting results.

Tides and Tidal Currents of the Yellow and East China Seas during the Last 13000 Years

  • Oh, Im-Sang;Lee, Dong-Eun
    • Journal of the korean society of oceanography
    • /
    • v.33 no.4
    • /
    • pp.137-145
    • /
    • 1998
  • In order to investigate the paleotidal structure and current pattern in the Yellow and East China seas (YECS) since the late Wisconsin, which is the last glacial maximum period, a two-dimensional version of the Princeton ocean model is used. We assume that subtracting the sea-level differences from the present one can produce paleobasins and that the paleotide did not differ greatly from the present one in the adjacent deep seas, the northwestern Pacific Ocean and the East Sea. We could successfully simulate the paleo-M$_2$ tides and tidal currents of 9000, 11000 and 13000 yr B.P. The result of the model shows considerable differences in the tidal pattern in each period. As the eustatic sea level rose, the amplitudes of the paleotides and the number of the amphidromic points generally increased, but the tidal currents in each paleobasin were strong and about the same order as the present day's. Based on these paleotide calculations, we suggest that there should have been active erosion in the paleobasin as in the present YECS, and the erosion should have played an important role on widening the paleobasin to the present shape, YECS.

  • PDF

Sediment Distribution of the Yeosu Sound on the Southern Coast of Korea Based on the 3.5 kHz Profiles (3.5 kHz 지층단면도에 나타난 여수해만의 퇴적물 분포)

  • 오진용;이연규;윤혜수;김성렬;최정민
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.425-434
    • /
    • 2000
  • The 3.5 KHz seismic survey was carried out for studying the distribution pattern of the unconsolidated sediments of the Yeosu Sound on the southern coast of the Korean Peninsula. Field data originally recorded in analog are converted and processed digitally to recover the high-resolution acoustic profiles. Across the north-south trending channel with the depth of 20~30 m, different seismic facies types are observed in the top section of sediments. The western part is characterized by the continuous high-amplitude subparallel reflectors within which the acoustic turbidity as a token of the presence of gas is commonly observed, whereas the counterpart largely shows poor reflectors and has shallow acoustic basement toward the north. The dissimilarity of the seismic expression across the channel can be interpreted as the result of the change of depositional environment caused by relative sea-level fluctuations of the late-Quaternary. During the last glacial period, the Yeosu Sound was exposed and eroded by the paleo-Seomjin River. By the following rapid rise of sea level, it was covered by the transgressive sand sheet. When the sea level reached near the present position, the muddy sediment has accumulated only in the western part of the Yeosu Sound as its depositional front has moved toward the north. It is partly caused by the asymmetrical tidal current in the Yeosu Sound where the flood near the bottom has stronger current flow and contains more suspended sediments.

  • PDF

Formation and Evolution of the Paleo-Seomjin River Incised-Valley System, Southern Coast of Korea: 1. Sequence Stratigraphy of Late Quaternary Sediments in Yosu Strait (한반도 남해안 고섬진강 절개곡 시스템의 형성과 진화: 1. 여수해협의 후기 제 4기층에 대한 순차층서)

  • Chun, Seung-Soo;Chang, Jin-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.142-151
    • /
    • 2001
  • Detailed interpretation of some high-resolution seismic profiles in Yosu Strait reveals that Late Quaternary deposits consist of three allostratigraphic units (UH, LH, PL) formed by fluvial and tidal controls. The top mud unit, UH, thins onshore, and overlies the backstepping modem Seomjin delta deposits, which is interpreted as a transgressive systems tract (757) related to Holocene relative sea-level rise. The unit LH below the unit UH is composed of delta, valley- and basin-fill facies. The delta facies (Unit $LH_1$) occurs only in Gwangyang Bay and shows two prograding sets retrogradationaly stacked, thus it is also interpreted as a transgressive systems tract(757). On the contrary, the valley- and basin-fill facies (Unit $LH_2$), interpreted as 757, occur between the units UH and PL (Pleistocene deposits) in Yosu Strait. The bounding surface between UH and $LH_2$ can be interpreted as a tidal ravinement surface on the basis of trends thinning toward inner bay and becoming young landward. Furthermore its geomorphological pattern is similar to that of recent tidal channels. This allostratigraphy in'ffsu Strait suggests that two 757 deposits (UH and $LH_2$), divided by tidal ravinement surface, have been formed in Yosu Strait, whereas in Gwangyang Bay backstepping delta deposits ($LH_1$) without tidal ravinement surface have been formed during Holocene sea-level rise. These characteristics indicate that different stacking patterns could be formed in these two areas according to different increasing rate of accommodation space caused by different geomorphology, sediment supply and tidal-current patterns even in the same period of Holocene sea-level rise.

  • PDF

Benthic Foraminiferal Assemblage and Sedimentary Environment of Core Sediments from the Northern Shelf of the East China Sea (북동중국해 대륙붕 코아 퇴적물의 저서유공충 군집 특성과 퇴적환경 연구)

  • Kang, So-Ra;Lim, Dhong-Il;Kim, So-Young;Rho, Kyoung-Chan;Yoo, Hae-Soo;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.29 no.6
    • /
    • pp.454-465
    • /
    • 2008
  • Benthic foraminiferal assemblage and AMS radiocarbon dating of core sediments from the northern shelf of the East China Sea were analyzed in order to understand the paleoenvironment and sedimentary environmental changes around the Korean marginal seas since the last glacial maximum (LGM). The core sediments, containing continuous records of the last 16,000 years, reveal a series of well-defined vertical changes in number of species (S), P/T ratio and species diversity (H) as well as foraminiferal assemblage. Such down-core variations display a sharp change at a core depth of approximately 240 cm, which corresponds to ca. 10,000 year B.P. The sediments of the lower part of the core (240${\sim}$560 cm, Zone I), including the well-developed tide-influenced sedimentary structures, are characterized by high abundances of Ammonia beccarii and Elphidium clavatum (s.l.) and low values in number of species, P/T ratio and diversity. These tide-influenced signatures and foraminiferal assemblage characters suggest that the sediments of Zone I were deposited in a coastal environment (water depths of 20${\sim}$30 m) such as tidal estuary with an influence of the paleo-rivers (e.g., old-Huanghe and Yangtze rivers) during the early phase of the sea-level rise (ca. 16,000 to 10,000 years) since the LGM. In contrast, the upper core sediments (0${\sim}$240 cm, Zone II) are characterized by abundant Eilohedra nipponica and Bolivina robusta with a minor contribution of A. ketienziensis angulata and B. marginata. and high values in number of species, P/T ratio and diversity. Based on relative abundance of these assemblage, Zone II can be divided into two subzones (IIa and IIb). Zone IIa is interpreted to be deposited under the inner-to-middle shelf environment during the marine transgression in the early Holocene (after ca. 9,000 yr B.P.) when sea level rapidly increased. The sediments of zone IIb most likely deposited after 6,000 yr B.P. under the outer shelf environment (80${\sim}$100 m water depth), which is similar to modem depositional environments. The muddy sediments of zone IIb were probably transported from the old-Huanghe and Yangtze Rivers during the late Holocene. We suggest that the present-day oceanographic conditions over the Yellow and the East China Seas have been established after ca. 7,000${\sim}$6,000 yr B.P. when the Kuroshio Current began to influence this area.