• Title/Summary/Keyword: Paldang lake

Search Result 147, Processing Time 0.026 seconds

Inhibitory Effect of Microcystis aeruginosa (Cyanophyceae) Growth by Plants in vitro (식물체를 이용한 조류증식억제 효과)

  • Jheong, Weon-Hwa;Byeon, Myeong-Seop;Jun, Sun-Ok;Lim, Byung-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.136-144
    • /
    • 2000
  • M. aeruginosa isolated from Lake Paldang was cultured in CB medium, and then each wet plants put into the cultured medium at a rate of 0.5 g and 2.5 g wet wt/l. There was slight inhibition by the input of cattail and iris of each 0.5 g wet wt/l cultured medium, but showed no reduction in algal growth in other flasks. Among the applied plants, ginkgo, pine needles, big cone pine, waterreed and water chestnut had an effect on inhibition of algal growth at the input of 2.5 g wet wt/l. Plants which were dried for 3 days at $50^{\circ}C$ introduced into the testing flask for 10days cultured at dose rates of 2.5 g/l. When chlorophyll a concentration was remarkably high as $802.6\;{\mu}g/l$ after five days, there was noticeably less chlorophyll compared with control at a rate of 98% by big cone pine, 96% by ginkgo, 95% by pine needles and 86% by rice straw, respectively. To examine the effect of plant extracts on algal growth, big cone pine and water chestnut were put to the amount of 1.25 g liquid extracts/l. Chlorophyll a concentration and cell density decreased to the extent of average 43% as compared with the beginning of experiment, but when concentration of chlorophyll a increased a most high, the inhibition of algal growth by liquid extracts did not affect at all. When a quantity of plant equivalent to 2.5 g liquid extracts/l inhibited the growth of algae by 95% after nine days.

  • PDF

Analysis of River Channel Morphology and Riparian Land Use Changes using Multi-temporal Aerial Photographs and Topographic Maps of the Early 20th Century in Gyeongan-cheon Watershed (시계열 항공사진과 20세기 초 지형도를 이용한 경안천유역의 하천형태 및 하천부지 변화추세 분석)

  • Park, Geun-Ae;Lee, Mi-Seon;Kim, Hyeon-Jun;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.5 s.154
    • /
    • pp.379-390
    • /
    • 2005
  • This study is to trace the change of stream shape using the past series of aortal photographs and topographic maps, and to compare the land use changes of inland along the stream. For the Gyeongan first & second class of local stream, aerial photographs of 1966, 1981 and 2000 were selected and ortho photographs were made with interior orientation and exterior orientation, respectively. In addition, topographic maps of 1914 - 1915 were used to compare with stream of 1966, 1981 and 2000. As apparent changes of the stream, the consolidated reaches of stream with levee construction were straightened and their stream width widened. Especially the stream width of inlet part of Paldang lake was widened almost twice because of the rise of water level by dam construction in 1974. The land use maps (1966, 1981, 2000) of riparian areas were also made, respectively and classified into 6 categories (water, forest, agricultural land, urban area, road, sandbar) by digitizing, The main changes of land use were agricultural land, urban area, road and sandbar.

Zooplankton and Phytoplankton in the Hyuncheon Wetland, Gangwon-do, Korea (강원도 현천리 습지의 동식물플랑크톤)

  • Kim, Saywa
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.371-376
    • /
    • 2014
  • A Study on zooplankton fauna and phytoplankton flora was carried out three times in June, August and September 2012 at the Hyuncheon wetland in Gangwon-do, Korea. A total of 14 taxa of zooplankton were distributed, which consisted of six rotifers, four cladocerans, two copepods, one nematode and one aquatic insect larvae. Occurrence of Simulium japonicum supports that studied water is the first grade clear water. It was observed that the abundance of zooplankton was never exceeded over $55ind.L^{-1}$. Rotifers dominated in the months of June and August, whereas cladocerans in September, respectively. The phytoplankton flora was consisted of 26 species. The standing crops varied between $4,080{\sim}10,120cell.L^{-1}$. Docidium undulatum is the typical species distributed in muddy wetland and Closterium acerosum is distributed widely from wetlands through lakes. Navicula spp. and Nitzchia spp. were recorded to be distributed in lentic waters of big lakes such as Paldang Lake. Species diversity indices decreased gradually from June to September between 1.3~1.9 in zooplankton but lowest in August between 0.9~1.6 in phytoplankton, respectively. Based on my study observation, I anticipate that the poor distribution of zooplankton, phytoplankton, and low values of species diversity index are likely to be a cause of narrow area with shallowness of waters during the short period.

Seasonal Succession of Planktonic Ciliate in Kyungan Stream of Lake Paldang, Korea (팔당호 유입부 경안천의 섬모충 플랑크톤 계절적 분포)

  • Moon, Eun-Young;Kim, Young-Ok;Kong, Dong-Soo;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.11-18
    • /
    • 2008
  • Seasonal succession and community composition of planktonic ciliates were studied in Kyungan Stream from December 2000 to December 2001. Oligotrichs accounted for 53% of total ciliates. Total abundance of ciliates peaked in spring (30 March, 6 April) and in summer (8 June, 20 July) reaching values up to $1.9\times10^4$ cells $L^{-1}$. Seasonal succession of dominant species occurred obviously. Large-sized $(>50{\mu}m)$ species (Stylonychia sp1, Phascolodon vorticella and Codonella cratera) dominanted from winter to spring. Small sized $(<30{\mu}m)$ species (Vorticella spp., Rimostrombidium hyalinum and Halteria grandinella) dominanted in summer and autumn. Total abundance of large-sized species coincided with the Chl-${\alpha}$ concencetation during the study (r=0.33, p<0.05, n=39). Among the small-sized species Halteria grandinella was a significant relationship with bacterial abundance (r=0.35, p<0.05, n=39).

Behavior of Clear-water Phase in Hybrid Water System with Fluvial and Lacustrine Characteristics (하천-호수 복합시스템에서 청수현상 발생 특성)

  • Sim, YounBo;Byeon, Myeong-Seop;Kim, Jae-Hyun;Yoo, Soon-Ju;Im, Jong-Kwon;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.315-326
    • /
    • 2021
  • The clear-water phase (CWP) is a notable limnological phenomenon in freshwater systems caused by predatory interactions between large filter-feeding zooplankton and phytoplankton. However, the mechanisms and factors that influence the extent of CWP, particularly in complex water systems with both fluvial and lacustrine characteristics, remain poorly understood. The present study evaluated CWP occurrence patterns at different sites in a large reservoir located in a temperate monsoon region (Lake Paldang, Korea); the relationships among factors associated with CWP occurrence, such as transparency, zooplankton diversity, and chlorophyll a concentration were investigated. Transparency exhibited significant correlations with precipitation and retention time, as well as the relative abundance of zooplankton (p<0.01), suggesting that a change in the retention time due to precipitation can alter CWP. Data collected before and after CWP occurrence were analyzed using paired t-test to determine variations in CWP occurrence based on the water system characteristics. The results demonstrated that various factors were associated with CWP occurrence in the fluvial-type and lacustrine-type sites. The correlation between zooplankton biomass and transparency was stronger in the lacustrine-type sites than in the fluvial-type sites. The lacustrine-type sites, where cladoceran emergence is common and is associated with long retention times, favored CWP occurrence. The results suggest that lacustrine-type sites, which are conducive to zooplankton development and have relatively long retention times, enhance CWP occurrence. Furthermore, CWP occurrence was notable in spring, and the present study revealed that site-specific CWP could occur throughout the year, regardless of the season.

Capping Treatment for the Reduction of Phosphorus Release from Contaminated Sediments of Lakes (호소퇴적물로부터 인 용출 저감을 위한 Capping 처리)

  • Kim, Seog-Ku;Lee, Mi-Kyung;Ahn, Jae-Hwan;Yun, Sang-Leen;Kim, So-Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.438-446
    • /
    • 2006
  • A lab-scale batch test was conducted to develop capping materials to reduce the sediment phosphorus in the stagnant water zone of Gyeongancheon in Paldang Lake. The mean grain size(Mz) of sediment in the investigated area was 7.7 ${\phi}$, which is very fine, and the contents of organic carbon($C_{org}$) was 2.4%, which is very high. For the phosphorous release experiment to select the optimal capping material, sand layer, powder-gypsum($CaSO_4{\cdot}2H_2O$), granule-gypsum, complex layer(gypsum+sand) and the control were compared and evaluated in the 150 L reactor for 45 days. In case of the capping with the sand, it was found that the phosphorous from the sediment could be reduced by around 50%. However, it was found that this caused the reduction of the dissolved oxygen in the water column(by less than 3 mg/L) due to the resuspension of sediment and the organic matter decomposition that comes from the generation of $CH_4$ gas in the 1 cm of the sand layer. Therefore, it is likely that the sand layer has to be thickener in case of the sand capping. Powder-gypsum and granule-Gypsum reduced phosphorous release by more than 80%. However, the concentration of ${SO_4}^{2-}$ in the water column increased, making it difficult to apply it to the drinking water protection zone. We developed Fe-Gypsum and $SiO_2$-gypsum materials to reduce the solubility of ${SO_4}^{2-}$. Powder-Gypsum creates the interception film that does not have any aperture on the sediment layer when it is combined with the water. However phosphorous release caused by the generation of $CH_4$ gas may happen at a time when the gypsum layer has the crack. Capping through the complex layer(granule-Gypsum+sand(1 cm)) found to be suitable for the drinking water protection zone because it was effective to prevent phosphorus release. Moreover, this leads to the lower solubility from the concentration of ${SO_4}^{2-}$ into the water column than the powder-Gypsum and granule-Gypsum. The addition of gypsum($CaSO_4{\cdot}2H_2O$) into the sediment can reduce the progress of methanogensis because fast early diagenesis and sufficient supply of ${SO_4}^{2-}$ to the sediment, stimulate the SRB(sulfate reducing bacteria) highly.

Treatment of Contaminated Sediment for Water Quality Improvement of Small-scale Reservoir (소하천형 호수의 수질개선을 위한 퇴적저니 처리방안 연구)

  • 배우근;이창수;정진욱;최동호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.31-39
    • /
    • 2002
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water column can accumulate in sediments at much higher levels. The purpose of this study was to make optimal treatment and disposal plan o( sediment for water quality improvement in small-scale resevoir based on an evaluation of degree of contamination. The degree of contamination were investigated for 23 samples of 9 site at different depth of sediment in small-scale J river. Results for analysis of contaminated sediments were observed that copper concentration of 4 samples were higher than the regulation of hazardous waste (3 mg/L) and that of all samples were exceeded soil pollution warning levels for agricultural areas. Lead and mercury concentration of all samples were detected below both regulations. Necessary of sediment dredge was evaluated for organic matter and nutrient through standard levels of Paldang lake and the lower Han river in Korea and Tokyo bay and Yokohama bay in Japan. The degree of contamination for organic matter and nutrient was not serious. Compared standard levels of Japan, America, and Canada for heavy metal, contaminated sediment was concluded as lowest effect level or limit of tolerance level because standard levels of America and Canada was established worst effect of benthic organisms. The optimal treatment method of sediment contained heavy metal was cement-based solidification/stabilization to prevent heavy metal leaching.