• Title/Summary/Keyword: Paget disease

Search Result 37, Processing Time 0.02 seconds

Clinical study of diagnosis and treatment of bisphosphonate-related osteonecrosis of the jaws (비스포스포네이트 관련 악골괴사의 진단 및 치료에 대한 임상적 연구)

  • Kim, Kyung-Wook;Kim, Beom-Jin;Lee, Chung-Hyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.1
    • /
    • pp.54-61
    • /
    • 2011
  • Introduction: Bisphosphonates is used widely for the treatment of the Paget's disease, multiple myeloma, bone metastases of malignant tumors with the prevention of pain and their pathological fracture. However, it was recently suggested that bisphosphonates related osteonecrosis of the jaw (BRONJ) is a side effect of bisphosphonate use. Materials and Methods: Twenty-four individuals, who were referred to the Department of Oral and Maxillofacial surgery, Dankook University Dental Hospital, were selected from those who had exposed bone associated with bisphosphonates from January, 2005 to December, 2009 according to the criteria of American Association of Oral and Maxillofacial Surgeons (AAOMS) for BRONJ. The patients group consisted of 7 males and 17 females between the age of 46 to 78 years (average 61.8 years). Each patient had panoramic imaging, computed tomography (CT), whole body bone scanning performed for a diagnosis and biopsy sampling from the necrotizing tissue. C-terminal cross-linking telopeptide of type I collagen (CTX) level of patients who had undergone surgical intervention was measured 7 days before surgery. Results: The main cause of bone exposure was post-extraction (15), chronic periodontitis (4), persistent irritation of the denture (3). Twenty people had undergone BRONJ treatment for two to eight months except for 4 people who had to maintain the bisphosphonates treatment to prevent a metastasis and bone trabecular pain with medical treatment. When the bisphosphonate treatment was suspended at least for 3 months and followed up according to the AAOMS protocols, the exposed necrotizing bones were found to be covered by soft tissue. Conclusion: Prevention therapy, interruption of bisphophonates for at least 3 months and cooperation with the physician for conservative treatment are the essential for treating BRONJ patient with high risk factors. The CTX level of BRONJ patients should be checked before undergoing surgical intervention. Surgical treatments should be delayed in the case of a CTX level <150 pg/mL.

Oral bisphosphonates induced osteonecrosis of the mandible : A case report

  • Son, Hyo-Jeong;Jang, Ho-Yeol;Keum, Yun-Seon;Lee, Jang-Yeol;Kim, Hyoun-Chull;Lee, Sang-Chull
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.2
    • /
    • pp.106-111
    • /
    • 2009
  • Bisphosphonates have been approved for Paget's disease, cancer-related hypercalcemia, bone involvement in multiple myeloma or solid tumors and osteoporosis. Although, underlying pathophysiological mechanisms remain unclear, it seems that bisphosphonates inhibit osteoclast precursor cells, modulate migratory and adhesive characteristics and induce apoptosis of osteoclasts. Furthermore impacts on angiogenesis, microenvironment and signal transduction between osteoclasts and osteoblasts. In this report, we present a case of oral bisphosphonates induced osteonecrosis of the mandible in a 84-year-old patient who received for two years. Two tapered screw vent implants(Zimmer, USA) were placed in the area of first and second molar. Two weeks later after crowns restored, some inflammatory signs and symptoms were observed on the second molar area. Sequestrum was formed and the sequestrum was removed with the implant. Frequent follow-up checks and oral hygiene maintenances were done and the first molar implant was restored. There is insufficient evidence suggests that duration of oral bisphosphonate therapy correlates with the development and severity of osteonecrosis. Therefore, dentists should not overlook the possibility of development of bisphosphonate induced osteonecrosis in patients who have taken oral forms of medication for less than three years.

Subunit Principle of Vulvar Reconstruction: Algorithm and Outcomes

  • Tan, Bien-Keem;Kang, Gavin Chun-Wui;Tay, Eng Hseon;Por, Yong Chen
    • Archives of Plastic Surgery
    • /
    • v.41 no.4
    • /
    • pp.379-386
    • /
    • 2014
  • Background Vulvar defects result chiefly from oncologic resection of vulvar tumors. Reconstruction of vulvar defects restores form and function for the purpose of coitus, micturition, and defecation. Many surgical options exist for vulvar reconstruction. The purpose of this article is to present our experience with vulvar reconstruction. Methods From 2007 to 2013, 43 women presented to us with vulvar defects for reconstruction. Their mean age at the time of reconstruction was 61.1 years. The most common cause of vulvar defect was from resection of vulvar carcinoma and extramammary Paget's disease of the vulva. Method s of reconstruction ranged from primary closure to skin grafting to the use of pedicled flaps. Results The main complications were that of long term hypertrophic and/or unaesthetic scarring of the donor site in 4 patients. Twenty-two patients (51%) were able to resume sexual intercourse. There were no complications of flap loss, wound dehiscence, and urethral stenosis. Conclusions We present a subunit algorithmic approach to vulvar reconstruction based on defect location within the vulva, dimension of the defect, and patient age and comorbidity. The gracilis and gluteal fold flaps are particularly versatile and aesthetically suited for reconstruction of a variety of vulvar defects. From an aesthetic viewpoint the gluteal fold flap was superior because of the well-concealed donor scar. We advocate the routine use of these 2 flaps for vulvar reconstruction.

Mechanism, prevention, risk assessment and treatment in bisphosphonates induced osteonecrosis of the jaw (Bisphosphonates induced osteonecrosis of the jaw의 기전, 예방, 위험 평가 및 치료 방법)

  • Park, Jung-Chul;Jung, Ui-Won;Kim, Chang-Sung;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Purpose: Bisphosphonates are drugs used to suppress osteoclastic activity and to treat osteoporosis, Paget's disease of bone and bone metastasis. The purpose of this report is to review the literatures on bisphosphonates use that could affect bone healing and cause osteonecrosis of the jaws. Materials and methods: Medline research was carried out to find relevant articles on bisphosphonates and osteonecrosis of the jaw. Results: Oral administration of bisphosphonates is reported to decrease the risk of adverse bone outcomes. On the contrary, IV bisphosphonates is known to significantly increase the risk. Prevention of the osteonecrosis of the jaw is primary concern before usage. If the adverse bone reaction takes place, proper management and treatments are required to alleviate pain of patients and prevent further progression of necrosis. Conclusion: Case reports of bisphosphonates induced osteonecrosis of the jaw are increasing. Dentists and physicians should be aware of the higher frequency of osteonecrosis of the jaw in patients receiving IV bisphosphonates and be prepared to prevent and cope with adverse bone reaction.

Aster saponin A2 inhibits osteoclastogenesis through mitogen-activated protein kinase-c-Fos-NFATc1 signaling pathway

  • Su, Xiang-Dong;Yang, Seo Y;Shrestha, Saroj K;Soh, Yunjo
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.47.1-47.11
    • /
    • 2022
  • Background: In lipopolysaccharide-induced RAW264.7 cells, Aster tataricus (AT) inhibits the nuclear factor kappa-light-chain-enhancer of activated B cells and MAPKs pathways and critical pathways of osteoclast development and bone resorption. Objectives: This study examined how aster saponin A2 (AS-A2) isolated from AT affects the processes and function of osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264.7 cells and bone marrow macrophages (BMMs). Methods: The cell viability, tartrate-resistant acid phosphatase staining, pit formation assay, polymerase chain reaction, and western blot were carried out to determine the effects of AS-A2 on osteoclastogenesis. Results: In RAW264.7 and BMMs, AS-A2 decreased RANKL-initiated osteoclast differentiation in a concentration-dependent manner. In AS-A2-treated cells, the phosphorylation of ERK1/2, JNK, and p38 protein expression were reduced considerably compared to the control cells. In RAW264.7 cells, AS-A2 suppressed the RANKL-induced activation of osteoclast-related genes. During osteoclast differentiation, AS-A2 suppressed the transcriptional and translational expression of NFATc1 and c-Fos. AS-A2 inhibited osteoclast development, reducing the size of the bone resorption pit area. Conclusion: AS-A2 isolated from AT appears to be a viable therapeutic therapy for osteolytic illnesses, such as osteoporosis, Paget's disease, and osteogenesis imperfecta.

Tumor Suppressive Effect of Zoledronic Acid on Human Osteosarcoma Cells in Vivo (인간 골육종 세포주에서 Zoledronic acid의 종양 억제에 대한 생체내 실험)

  • Kim, Jae-Do;Seo, Tae-Hyuck;Lee, Dong-Won;Kwon, Young-Ho;Jang, Jae-Ho;Lee, Young-Goo
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.11 no.1
    • /
    • pp.46-53
    • /
    • 2005
  • Purpose: Bisphosphonates (BPs) are the analogues of endogenous pyrophosphates: they have been used in the treatment of skeletal diseases such as Paget's disease, osteoporosis, and tumorinducing ostelysis, and are used in treatment of osteolytic metastasis of breast cancer recently. They are also used as one of the therapeutic agents for metastasis of prostatic cancer of which metastasis makes the mixed nature of osteolysis and ostegenesis. Although the action mechanism of BPs are well known for diseases with excessive osteoclastic bone resorption, the direct effect of BPs has not been known yet. This study was intended to see the tumor suppression capability of Zoledronic acid(ZOL) using nude mouse with osteosarcoma. Materials and Methods: MG-63 and HOS osteosarcoma cell lines were used and the transforemed MG-63-GFP and HOS-GFP cells, which were made for detection under fluorescent light, were subcutaneously injected to make osteosarcoma. The five 6-week male mice were used for the experiment at each group. After the injection, mice were cultivated until tumor pieces grow up to $3{\times}3{\times}3$ $mm^3$ and ZOL of 120 ug/kg was subcutaneously injected twice a week. Sizes of tumor were measured twice a week and photographed under fluorescent light. Results: In in vivo test with HOS osteosarcoma cell lines, mean size of tumors was 2,520 $mm^3$ in control group and was 131 $mm^3$ in ZOL group, which showed 94% of reduction comparing with the control ; with MG-63 osteosarcoma cell lines, mean size of tumors was 2,866 $mm^3$ in control group and was 209 $mm^3$ in test group with 72% of reduction (p<0.05). Conclusion: In in vivo tests with nude mice, we suggest that ZOL has direct effect on osteosarcoma cells and it would be used as one of the therapeutic agents for osteosarcoma, especially to ZOL-sensitive osteosarcoma cells.

  • PDF

A Literature Study of Dermatosurgical Diseases in the ImJeungJiNamUiAn (臨證指南醫案에 나타난 피부외과 질환에 대한 문헌고찰)

  • Cho, Jae-Hun;Chae, Byung-Yoon;Kim, Yoon-Bum
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.15 no.2
    • /
    • pp.271-288
    • /
    • 2002
  • Authors investigated the pathogenesis and treatment of dennatosurgical diseases in the ImJeungJiNamUiAn(臨證指南醫案). 1. The symptoms and diseases of dermatosurgery were as follows; 1) BanSaJinRa(반사진라) : eczema, atopic dermatitis, seborrheic dermatitis, psoriasis, lichen planus, pityriasis rosea, hives, dermographism, angioedema, cholinergic urticaria, urticaria pigmentosa, acne, milium, syringoma, keratosis pilaris, discoid lupus erythematosus, hypersensitivity vasculitis, drug eruption, polymorphic light eruption, rheumatic fever, juvenile rheumatoid arthritis(Still's disease), acute febrile neutrophilic dermatosis(Sweet's syndrome), Paget's disease, folliculitis, viral exanthems, molluscum contagiosum, tinea, tinea versicolor, lymphoma, lymphadenitis, lymphangitis, granuloma annulare, cherry angioma 2) ChangYang(瘡瘍) : acute stage eczema, seborrheic dermatitis, stasis ulcer, intertrigo, xerosis, psoriasis, lichen planus, ichthyosis, pityriasis rosea, rosacea, acne, keratosis pilaris, dyshidrosis, dermatitis herpetiformis, herpes gestationis, bullae in diabetics, pemphigus, lupus erythematosus, fixed drug eruption, erythema multiforme, toxic epidermal necrolysis, toxic shock syndrome, staphylococcal scaled skin syndrome, scarlet fever, folliculitis, impetigo, pyoderma gangrenosum, tinea, candidiasis, scabies, herpes simplex, herpes zoster, chicken pox, Kawasaki syndrome, lipoma, goiter, thyroid nodule, thyroiditis, hyperthyroidism, thyroid cancer, benign breast disorder, breast carcinoma, hepatic abscess, appendicitis, hemorrhoid 3) Yeok(疫) : scarlet fever, chicken pox, measles, rubella, exanthem subitum, erythema infectiosum, Epstein-Barr virus infection, cytomegalovirus infection, hand-foot-mouth disease, Kawasaki disease 4) Han(汗) : hyperhidrosis 2. The pathogenesis and treatment of dermatosurgery were as follows; 1) When the pathogenesis of BalSa(발사), BalJin(發疹), BalLa(발라) and HangJong(項腫) are wind-warm(風溫), exogenous cold with endogenous heat(外寒內熱), wind-damp(風濕), the treatment of evaporation(解表) with Menthae Herba(薄荷), Arctii Fructus(牛蒡子), Forsythiae Fructus(連翹) Mori Cortex(桑白皮), Fritillariae Cirrhosae Bulbus(貝母), Armeniaoae Amarum Semen(杏仁), Ephedrae Herba(麻黃), Cinnamomi Ramulus(桂枝), Curcumae Longae Rhizoma(薑黃), etc can be applied. 2) When the pathogenesis of BuYang(부양), ChangI(瘡痍) and ChangJilGaeSeon(瘡疾疥癬) are wind-heat(風熱), blood fever with wind transformation(血熱風動), wind-damp(風濕), the treatment of wind-dispelling(疏風) with Arctii Fructus(牛蒡子), Schizonepetae Herba(荊芥), Ledebouriellae Radix(防風), Dictamni Radicis Cortex(白鮮皮), Bombyx Batrytioatus(白??), etc can be applied. 3) When the pathogenesis of SaHuHaeSu(사후해수), SaJin(사진), BalJin(發疹), EunJin(은진) and BuYang(부양) are wind-heat(風熱), exogenous cold with endogenous heat(外寒內熱), exogenous warm pathogen with endogenous damp-heat(溫邪外感 濕熱內蘊), warm pathogen's penetration(溫邪內陷), insidious heat's penetration of pericardium(伏熱入包絡), the treatment of Ki-cooling(淸氣) with TongSeongHwan(通聖丸), Praeparatum(豆?), Phyllostachys Folium(竹葉), Mori Cortex(桑白皮), Tetrapanacis Medulla(通草), etc can be applied. 4) When the pathogenesis of JeokBan(적반), BalLa(발라), GuChang(久瘡), GyeolHaek(結核), DamHaek(痰核), Yeong(?), YuJu(流注), Breast Diseases(乳房疾患) and DoHan(盜汗) are stagnancy's injury of Ki and blood(鬱傷氣血), gallbladder fire with stomach damp(膽火胃濕), deficiency of Yin in stomach with Kwolum's check (胃陰虛 厥陰乘), heat's penetration of blood collaterals with disharmony of liver and stomach(熱入血絡 肝胃不和), insidious pathogen in Kwolum(邪伏厥陰), the treatment of mediation(和解) with Prunellae Spica(夏枯草), Chrysanthemi Flos(菊花), Mori Folium (桑葉), Bupleuri Radix(柴胡), Coptidis Rhizoma(黃連), Scutellariae Radix(黃芩), Gardeniae Fructus(梔子), Cyperi Rhizoma(香附子), Toosendan Fructus(川?子), Curcumae Radix(鬱金), Moutan Cortex(牧丹皮), Paeoniae Radix Rubra(赤芍藥), Unoariae Ramulus Et Uncus(釣鉤藤), Cinnamorni Ramulus(桂枝), Paeoniae Radix Alba(白芍藥), Polygoni Multiflori Radix (何首烏), Cannabis Fructus (胡麻子), Ostreae Concha(牡蠣), Zizyphi Spinosae Semen(酸棗仁), Pinelliae Rhizoma(半夏), Poria(백복령). etc can be applied. 5) When the pathogenesis of BanJin(반진), BalLa(발라), ChangI(瘡痍), NamgChang(膿瘡). ChangJilGaeSeon(瘡疾疥癬), ChangYang(瘡瘍), SeoYang(署瘍), NongYang(膿瘍) and GweYang(潰瘍) are wind-damp(風濕), summer heat-damp(暑濕), damp-warm(濕溫), downward flow of damp-heat(濕熱下垂), damp-heat with phlegm transformation(濕熱化痰), gallbladder fire with stomach damp(膽火胃濕), overdose of cold herbs(寒凉之樂 過服), the treatment of damp-resolving(化濕) with Pinelliae Rhizoma(半夏), armeniacae Amarum Semen(杏仁), Arecae Pericarpium(大腹皮), Poria(백복령), Coicis Semen(薏苡仁), Talcum(滑石), Glauberitum(寒水石), Dioscoreae Tokoro Rhizoma(??), Alismatis Rhizoma(澤瀉), Phellodendri Cortex(黃柏), Phaseoli Radiati Semen(?豆皮), Bombycis Excrementum(?沙), Bombyx Batryticatus(白??), Stephaniae Tetrandrae Radix(防己), etc can be applied. 6) When the pathogenesis of ChangPo(瘡泡), hepatic abscess(肝癰) and appendicitis(腸癰) are food poisoning(食物中毒), Ki obstruction & blood stasis in the interior(기비혈어재과), damp-heat stagnation with six Bu organs suspension(濕熱結聚 六腑不通), the treatment of purgation(通下) with DaeHwangMokDanPiTang(大黃牧丹皮湯), Manitis Squama(穿山甲), Curcumae Radix(鬱金), Curcumae Longae Rhizoma(薑黃), Tetrapanacis Medulla(通草), etc can be applied. 7) When the pathogenesis of JeokBan(적반), BanJin(반진), EunJin(은진). BuYang(부양), ChangI(瘡痍), ChangPo(瘡泡), GuChang(久瘡), NongYang(膿瘍), GweYang(潰瘍), Jeong(정), Jeol(癤), YeokRyeo(疫?) and YeokRyeolpDan(疫?入?) are wind-heat stagnation(風熱久未解), blood fever in Yangmyong(陽明血熱), blood fever with transformation(血熱風動), heat's penetration of blood collaterals(熱入血絡). fever in blood(血分有熱), insidious heat in triple energizer(三焦伏熱), pathogen's penetration of pericardium(心包受邪), deficiency of Yong(營虛), epidemic pathogen(感受穢濁), the treatment of Yong & blood-cooling(淸營凉血) with SeoGakJiHwangTang(犀角地黃湯), Scrophulariae Radix(玄參), Salviae Miltiorrhizae Radix(丹參), Angelicae Gigantis Radix(當歸), Polygoni Multiflori Radix(何首烏), Cannabis Fructus(胡麻子), Biotae Semen(柏子仁), Liriopis Tuber(麥門冬), Phaseoli Semen(赤豆皮), Forsythiae Fructus(連翹), SaJin(사진), YangDok(瘍毒) and YeokRyeoIpDan(역려입단) are insidious heat's penetration of pericardium(伏熱入包絡), damp-warm's penetration of blood collaterals(濕溫入血絡), epidemic pathogen's penetration of pericardium(심포감수역려), the treatment of resuscitation(開竅) with JiBoDan(至寶丹), UHwangHwan(牛黃丸), Forsythiae Fructus(連翹), Curcumae Radix(鬱金), Tetrapanacis Medulla(通草), Acori Graminei Rhizoma(石菖蒲), etc can be applied. 9) When the pathogenesis of SaHuSinTong(사후신통), SaHuYeolBuJi(사후열부지), ChangI(瘡痍), YangSon(瘍損) and DoHan(盜汗) are deficiency of Yin in Yangmyong stomach(陽明胃陰虛), deficiency of Yin(陰虛), the treatment of Yin-replenishing(滋陰) with MaekMunDongTang(麥門冬湯), GyeongOkGo(瓊玉膏), Schizandrae Fructus(五味子), Adenophorae Radix(沙參), Lycii Radicis Cortex (地骨皮), Polygonati Odorati Rhizoma(玉竹), Dindrobii Herba(石斛), Paeoniae Radix Alba(白芍藥), Ligustri Lucidi Fructus (女貞子), etc can be applied. 10) When the pathogenesis of RuYang(漏瘍) is endogenous wind in Yang collaterals(陽絡內風), the treatment of endogenous wind-calming(息風) with Mume Fructus(烏梅), Paeoniae Radix Alba (白芍藥), etc be applied. 11) When the pathogenesis of GuChang(久瘡), GweYang(潰瘍), RuYang(漏瘍), ChiChang(痔瘡), JaHan(自汗) and OSimHan(五心汗) are consumption of stomach(胃損), consumption of Ki & blood(氣血耗盡), overexertion of heart vitality(勞傷心神), deficiency of Yong(營虛), deficiency of Wi(衛虛), deficiency of Yang(陽虛), the treatment of Yang-restoring & exhaustion-arresting(回陽固脫) with RijungTang(理中湯), jinMuTang(眞武湯), SaengMaekSaGunjaTang(生脈四君子湯), Astragali Radix (황기), Ledebouriellae Radix(防風), Cinnamomi Ramulus(桂枝), Angelicae Gigantis Radix(當歸), Ostreae Concha(牡蠣), Zanthoxyli Fructus(川椒), Cuscutae Semen(兎絲子), etc can be applied.

  • PDF