• 제목/요약/키워드: Page Clone

검색결과 48건 처리시간 0.022초

돌돔(Oplegnathus fasciatus) somatolactin cDNA의 분석 (Characterization of Somatolactin cDNA from Rock Bream (Oplegnathus fasciatus))

  • 강현실;여인규;이제희
    • 생명과학회지
    • /
    • 제13권6호
    • /
    • pp.805-813
    • /
    • 2003
  • 돌돔 (Oplegnathus fasciatus) SL을 암호화하는 cDNA clone을 뇌하수체로부터 RT-PCR 방법에 의해 획득하였다. 돌돔 SL cDNA의 길이는 1636 bp로서 24개의 아미노산인 signal peptide와 207개 의 aa으로 구성된 mature protein을 암호화하는 696 bp의 open reading frame을 갖고 있다. 또한, 돌돔 SL 아미노산에는 이황화 결합에 관여하는 7개의 시스테인 잔기 $(Cys^{5},\; Cys^{15},\; Cys^{42},\; Cys^{65},\; Cys^{181},\; Cys^{198}\$$Cys^{206})$와 두 개의 potential N-glycosylation site인 $Asn^{121}$$Asn^{153}$을 확인하였다. 돌돔 SL은 goldfish와 channel catfish를 제외한 다른 경골어류 SL에 아미노산 서열은 61.1∼92.6%, 뉴클레오타이드 서열은 63∼92.6%의 일치를 나타낸다. 아미노산 서열 alingment에서 돌돔 SL은 다른 어류 SL에 공통적인 4개의 conserved domain $(A_{SL},\; B_{SL},\; C_{SL}$$D_{SL})$을 갖고 있음을 확인하였다. 이들중 $A_{SL},\; B_{SL}$,과 $D_{SL}$,은 경골어류 growth hormone과 prolactin에도 잘 보존되어 있었다 재조합 돌돔 SL 단백질을 E. coli에서 생산하기 위해 돌돔 SL cDNA를 발현벡터에 클로닝하여 단백질의 발현을 유도하였다 발현된 단백질은 SDS-PAGE에 의해 분자량 약 27 kDa의 재조합 단백질의 발현을 확인하였다.

뉴메모리 기반 시스템에서 세밀한 COW 관리 기법을 통한 효율적 프로세스 체크포인팅 기법 (Efficient Process Checkpointing through Fine-Grained COW Management in New Memory based Systems)

  • 박재형;문영제;노삼혁
    • 정보과학회 논문지
    • /
    • 제44권2호
    • /
    • pp.132-138
    • /
    • 2017
  • 본 연구에서는 뉴메모리 기반 컴퓨팅 시스템의 신뢰성을 높이기 위해 프로세스 단위로 체크포인팅하는 시스템을 설계하고 구현한다. 프로세스 체크포인팅을 위하여 일반적인 프로세스 실행에서 문맥전환이 일어나는 시점마다 결함이 발생하기 이전의 안전한 상태로 되돌아갈 수 있는 롤백 시점을 만든다. 본 연구에서는 롤백 시점의 안전한 프로세스 상태에 대한 새로운 프로세스를 만들며 이를 P-process(Persistent-process)라고 명명한다. P-process를 만드는 주기를 세밀한 간격인 문맥전환 때마다 만들기 때문에 결함이 발생하였을 때 롤백으로 인한 프로세스 실행시간 손실을 작게 만들 수 있다. P-process를 만드는 오버헤드를 줄이기 위하여 프로세스의 메모리 상태에서 변경된 부분만 저장할 수 있도록 COW(Copy-On-Write) 메커니즘을 이용하였다. 문맥전환 때마다 P-process를 생성하였을 때 PARSEC 벤치마크의 11개 워크로드 중 8개의 워크로드에서 5% 내의 실행 시간 오버헤드가 발생하였으며 오버헤드가 많이 발생한 워크로드도 P-process의 생성 주기의 조정으로 오버헤드를 감소시킬 수 있었다.

Substitution of Glycine 275 by Glutamate (G275E) in Lipase of Bacillus stearothermophilus Affects Its Catalytic Activity and Enantio- and Chain Length Specificity

  • Kim, Myung-Hee;Kim, Hyung-Kwoun;Oh, Byung-Chul;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권6호
    • /
    • pp.764-769
    • /
    • 2000
  • The lipase gene(lip) from Bacillus stearothermophilus was recombined in vitro by utilizing the DNA shuffling technique. After four rounds of shuffling, transformation, and screening based on the initial rate of clear zone formation on a tricaprylin plate, a clone (M10) was isolated, the cell extract of which showed about 2.8-fold increased lipase activity. The DNA sequence of the mutant lipase gene (m10) showed 3 base changes, resulting in two cryptic mutations and one amino acid substitution: S113($AGC{\rightarrow}AGT$), L252 ($TTG{\rightarrow}TTA$), and G275E ($GGA{\rightarrow}GAA$). SDS-PAGE analysis revealed that the increased enzyme activity observed in M10 was partly caused by high expression of the m10 lipase gene. The amount of the expressed G275E lipase was estimated to comprise as much as 41% of the total soluble proteins of the cell. The maximum velocity ($V_{max}$) of the purified mutant enzyme for the hydrolysis of olive oil was measured to be 3,200 U/mg, which was 10% higher than that of the parental (WT) lipase (2,900 U/mg). Its optimum temperature for the hydrolysis of olive oil was $68^{\circ}C$ and it showed a typical $Ca^{2+}$-dependent thermostability, properties fo which were the same as those of the WT lipase. However, the mutant enzyme exhibited a high enantiospecificity towards (S)-naproxen compared with the WT lipase. In addition, it showed increased hydrolytic activity towards triolein, tricaprin, tricaprylin, and tricaproin.

  • PDF

Purification and Characterization of 2,3-Dihydroxybiphenyl 1,2- Dioxygenase from Comamonas sp.

  • Lee Na Ri;Kwon Dae Young;Min Kyung Hee
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2001년도 추계학술대회
    • /
    • pp.16-25
    • /
    • 2001
  • A genomic library of biphenyl-degrading strain Comamonas sp. SMN4 was constructed by using the cosmid vector pWE15 and introduced into Escherichia coli. Of 1,000 recombinant clones tested, two clones that expressed 2,3-dihydroxybiphenyl 1,2-dioxygenase activity were found (named pNB 1 and pNB2). From pNB1 clone, subclone pNA210, demonstrated 2,3-dihydroxybiphenyl 1,2-dioxygenase activity, is isolated. 2,3-Dihydroxybiphenyl 1,2-dioxygenase (23DBDO, BphC) is an extradiol-type dioxygenase that involved in third step of biphenyl degradation pathway. The nucleotide sequence of the Comamonas sp. SMN4 gene bphC, which encodes 23DBDO, was cloned into a plasmid pQE30. The His-tagged 23DBDO produced by a recombinant Escherichia coli, SG 13009 (pREP4)(pNPC), and purified with a Ni-nitrilotriacetic acid resin affinity column using the His-bind Qiagen system. The His-tagged 23DBDO construction was active. SDS-PAGE analysis of the purified active 23DBDO gave a single band of 32 kDa; this is in agreement with the size of the bphC coding region. The 23DBDO exhibited maximum activity at pH 9.0. The CD data for the pHs, showed that this enzyme had a typical a-helical folding structures at neutral pHs ranged from pH 4.5 to pH 9.0. This structure maintained up to pH 10.5. However, this high stable folding strucure was converted to unfolded structure in acidic region (pH 2.5) or in high pH (pH 12.0). The result of CD spectra observed with pH effects on 23DBDO activity, suggested that charge transition by pH change have affected change of conformational structure for 23DBDO catalytic reaction. The $K_m$ for 2,3-dihydroxybiphenyl, 3-metylcatechol, 4-methylcatechol and catechol was 11.7 $\mu$M, 24 $\mu$M, 50 mM and 625 $\mu$M.

  • PDF

인간 Poly(ADP-ribose) Synthetase cDNA의 클로닝 및 대장균에서의 발현 (Molecular Cloning and Expression of Human Poly (ADP-ribose) Synthetase cDNA in E. Coli)

  • 이성용;김완주;이태성;박상대;이정섭;박종군
    • 한국동물학회지
    • /
    • 제39권3호
    • /
    • pp.248-256
    • /
    • 1996
  • 본 연구의 목적은 인간의 Poly(ADP-ribose) synthetase (PARS)의 cDNA를 클로닝하여 발현시키기 위해 수행하였다. 먼저, 인간의 PARS cDNA 전체를 포함한 pPARS3.1을 pGEM-7Zf(+) 등의 발현 벡터 클로닝하였다. 이 결과로 생성된 재조합 플라스미드 pPARS6.1이 인간의 PARS cDNA 전체를 포함하고, 올바른 방향으로 삽입되었는지를 확인하기 위해 제한효소 지도를 작성하였고, random primed DNA probe을 이용한 Southern blot 분석에 의해서 PARS가 클로닝되었다는 것을 확인하였다. 또한, 염기서열 분석 결과, 단백질 합성이 시작되는 유전 암호가 정확한 순서로 위치하고 있음을 확인하였다. 재조합된 pPARS6.1의 발현을 위해 배양시 0.4 mM IPTG로 처리하여 만들어진 인간의 PARS 단백질이 10% SDS-PAGE에서 120 kDa 위치에 이동하였다는 것을 nick-translated된 DNA를 probe로 이용하여 확인하였고, Southwestern blot 실험 결과 120 kDa과 98kDa에 위치하는 단백질이 DNA와 결합함을 알 수 있었다.

  • PDF

Cloning and Expression of a Novel Chitosanase Gene (choK) from $\beta$-Proteobacterium KNU3 by Double Inverse PCR

  • Yi, Jae-Hyoung;Lee, Keun-Eok;Choi, Shin-Geon
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.563-569
    • /
    • 2004
  • The DNA sequence of the chitosanase gene (choK) from $\beta$-Proteobacterium KNU3 showed an 1,158-bp open reading frame that encodes a protein of 386 amino acids with a novel 74 signal peptide. The degenerated primers based on the partial deduced amino acid sequences from MALDI- TOF MS analyses yielded the 820 bp of the PCR product. Based on this information, double inverse PCR cloning experiments, which use the two specific sets of PCR primers rather than single set primers, identified the unknown 1.2 kb of the choK gene. Subsequently, a 1.8 kb of full choK gene was cloned from another PCR cloning experiment and it was then subcloned into pGEM T-easy and pUC18 vectors. The recombinant E. coli clone harboring recombinant pUC18 vector produced a clear halo around the colony in the glycol chitosan plates. The recombinant ChoK protein was secreted into medium in a mature form while the intracellular ChoK was produced without signal peptide cleavage. The activity staining of PAGE showed that the recombinant ChoK protein was identical to the chitosanase of wild-type. The comparison of deduced amino acid sequences of choK revealed that there is 92% identity with that of Sphingobacterium multivorum chitosanase. Judging from the conserved module in other bacterial chitosanases, chitosanase of KNU3 strain (ChoK) belongs to the family 80 of glycoside hydrolases.

Molecular Clonging and Hyperexpression of a Bt Gene, cryIAc, in Escherichia coli $DH5{\alpha}$: Production and Usage of Anti-CryIAc Antibody

  • RYOU, CHONGSUK;TAEYOUNG CHUNG;MOOSIK KWON
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권6호
    • /
    • pp.1093-1098
    • /
    • 2001
  • The gene coding for a Lepidoptera-specific insecticidal crystalline (or control) protein (ICP), recognized as cryIAc, from Bacillus thuringiensis subsp. kurstaki HD-73, was cloned into the vector pBluscript ll SK-, and then transformed in Escherichia coli $DH5{\alpha}$. The clone was named EBtIAc and the chimeric phagemid, as pEBtIAc. Hyperexpression of CryIAc protoxin was observed in the extract of the culture of E. coli harboring pEBtIAc. Crystalline protoxin was purified by differential solubility. It was dissolved in alkaline pH, and exposed to trypsin to be activated. The molecular weights of the pro- and activated toxins on SDS-PAGE were estimated to be ca. 130 kDa and 60 kDa, respectively. The toxicity was tested by force-feeding larvae of gypsi moth (Lymantria diapar) with trypsinized protoxin. Using the batch of biologically active form of the toxin as an immunogen, anti-CryIAc antiserum was raised in a New Zealand white rabbit. Immunoglobulin G was fractionated from the seam by Protein-A sepharose affinity chromatography. Immunoreactivity of the antibody was examined by dot and Westerns blottings. It has been found that the anti- CryIAc antibody recognized the purified toxin at a level below a nanogram in terms of quantity. Using the antibody some of Bt-corns were able to be differentiated from tons of corn kernels which were imported from America as forage crops.

  • PDF

Screening and Characterization of a Novel Cellulase Gene from the Gut Microflora of Hermetia illucens Using Metagenomic Library

  • Lee, Chang-Muk;Lee, Young-Seok;Seo, So-Hyeon;Yoon, Sang-Hong;Kim, Soo-Jin;Hahn, Bum-Soo;Sim, Joon-Soo;Koo, Bon-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권9호
    • /
    • pp.1196-1206
    • /
    • 2014
  • A metagenomic fosmid library was constructed using genomic DNA isolated from the gut microflora of Hermetia illucens, a black soldier fly. A cellulase-positive clone, with the CS10 gene, was identified by extensive Congo-red overlay screenings for cellulase activity from the fosmid library of 92,000 clones. The CS10 gene was composed of a 996 bp DNA sequence encoding the mature protein of 331 amino acids. The deduced amino acids of CS10 showed 72% sequence identity with the glycosyl hydrolase family 5 gene of Dysgonomonas mossii, displaying no significant sequence homology to already known cellulases. The purified CS10 protein presented a single band of cellulase activity with a molecular mass of approximately 40 kDa on the SDS-PAGE gel and zymogram. The purified CS10 protein exhibited optimal activity at $50^{\circ}C$ and pH 7.0, and the thermostability and pH stability of CS10 were preserved at the ranges of $20{\sim}50^{\circ}C$ and pH 4.0~10.0. CS10 exhibited little loss of cellulase activity against various chemical reagents such as 10% polar organic solvents, 1% non-ionic detergents, and 0.5 M denaturing agents. Moreover, the substrate specificity and the product patterns by thin-layer chromatography suggested that CS10 is an endo-${\beta}$-1,4-glucanase. From these biochemical properties of CS10, it is expected that the enzyme has the potential for application in industrial processes.

Enhanced Purification of Recombinant Rat NADPH-P450 Reductase by Using a Hexahistidine-Tag

  • Park, Hyoung-Goo;Lim, Young-Ran;Han, Songhee;Jeong, Dabin;Kim, Donghak
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권5호
    • /
    • pp.983-989
    • /
    • 2017
  • NADPH-P450 reductase (NPR) transfers electrons from NADPH to cytochrome P450 and heme oxygenase enzymes to support their catalytic activities. This protein is localized within the endoplasmic reticulum membrane and utilizes FMN, FAD, and NADPH as cofactors. Although NPR is essential toward enabling the biochemical and pharmacological analyses of P450 enzymes, its production as a recombinant purified protein requires a series of tedious efforts and a high cost due to the use of $NADP^+$ in the affinity chromatography process. In the present study, the rat NPR clone containing a $6{\times}$ Histidine-tag (NPR-His) was constructed and heterologously expressed. The NPR-His protein was purified using $Ni^{2+}$-affinity chromatography, and its functional features were characterized. A single band at 78 kDa was observed from SDS-PAGE and the purified protein displayed a maximum absorbance at 455 nm, indicating the presence of an oxidized flavin cofactor. Cytochrome c and nitroblue tetrazolium were reduced by purified NPR-His in an NADPH-dependent manner. The purified NPR-His successfully supported the catalytic activities of human P450 1A2 and 2A6 and fungal CYP52A21, yielding results similar to those obtained using conventional purified rat reductase. This study will facilitate the use of recombinant NPR-His protein in the various fields of P450 research.

Photoaffinity Labelling of the Human Erythrocyte Glucose Transporters Expressed in Spodoptera frugiperda Clone 9 (Sf9) Cells

  • Lee, Chong-Kee
    • 대한의생명과학회지
    • /
    • 제8권4호
    • /
    • pp.211-215
    • /
    • 2002
  • The baculovirus/Sf9 cell expression can be employed as a powerful system for producing large amounts of the human erythrocyte glucose transporter, GLUT1 heterologously In order to exploit the system further, it is necessary to develop a convenient method for demonstrating that the transporter expressed in insect cells is biologically active. To achieve this, we have expressed the human CLUT1 in insect cells and photolabelled the expressed protein with [$^3$H] cytochalasin B, a potent inhibitor of the human erythrocyte glucose transporter. Subsequently, the labelled proteins were analysed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Membranes labelled with [$^3$H] cytochalasln B in the presence of L-Glucose yielded a single sharp peak of labelling of apparent $M_r$ 45,000 on SDS/polyacrylamide gels. The mobility of this peak corresponded exactly to that of the band detected by anti-glucose transporter antibodies on Western blots of membranes prepared from insect cells infected with recombinant virus. In addition, the sharpness of the radioactive peak provides further evidence for the conclusion that the expressed protein is much less heavily and heterogeneously glycosylated than its erythrocyte counterpart. No peak of labelling was seen with the membranes prepared from non-infected Sf9 cells. Furthermore, the incorporation of label into this peak was completely inhibited by the presence of 500 mM-D-Glucose during tile photolabelling procedure, showing the stereoselectivity of the labelling. These evidences clearly show that human glucose transporter expressed in insect cells exhibits native-like biological activity, and that photolabelling with [$^3$H] cytochalasin B can be a convenient means for analysing the biological activity of the transport protein expressed in insect cells.

  • PDF