• Title/Summary/Keyword: Paenibacillus elgii

Search Result 5, Processing Time 0.018 seconds

Antimicrobial activity by Paenibacillus elgii DS381 and its antimicrobial substances against microbial residents on human skin and pathogenic bacteria (인간 피부 상재균과 병원성 세균에 대한 Paenibacillus elgii DS381과 그 항균물질의 항균활성)

  • Lee, Da-Sol;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.244-253
    • /
    • 2018
  • This study was carried out to evaluate effects of antimicrobial substances produced by isolated soil bacteria. Among two thousands of bacterial isolates Paenibacillus elgii DS381 exhibited high antimicrobial activities against several microbial residents on human skin and pathogenic bacteria. DS381 showed 15.3~26.0 mm inhibition zone diameter against all target bacteria and yeast in agar well diffusion test. Antimicrobial peptide produced by DS381 indicated low minimum inhibitory concentration (0.039-5.000 mg/ml). DS381 produced biosurfactant such as lipopeptide, and surface tension of culture supernatant of DS381 reduced from 60.0 to 40.3 mN/m. DS381 also showed $1.56{\pm}0.13U/ml$ of chitinase activity. These results suggest that Paenibacillus elgii DS381 may be utilized as an efficient biocontrol agent against some important human skin microbes and pathogenic bacteria.

Paenibacillus elgii SD17 as a Biocontrol Agent Against Soil-borne Turf Diseases

  • Kim, Dal-Soo;Rae, Cheol-Yong;Chun, Sam-Jae;Kim, Do-Hyung;Choi, Sung-Won;Choi, Kee-Hyun
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.328-333
    • /
    • 2005
  • Paenibacillus elgii SD17 (KCTC $10016BP^T$=NBRC $100335^T$) was recently reported as a new species. Based on its inhibitory activity to Thanatephorus cucumeris AG1-1, strain SD17 was further evaluated for its potential as a biocontrol agent against soil-borne diseases of turf grasses in Korea. P. elgii SD17 showed a broad spectrum of antimicrobial activity in vitro test and suppressed development of turf grass diseases; Pythium blight caused by Pythium aphanidermatum and brown patch caused by T. cucumeris AG1-1 on creeping bentgrass (Agrostis palustris) in the growth chamber tests. Under a condition for massive culture in a 5,000 L fermenter, P. elgii SD17 reached $6.4{\times}10^8$ spores/ml that resulted in approximately $1.0{\times}10^7$ cfu/g when formulated into a granule formulation (GR) using the whole culture broth instead of water. Using the GR formulation, biocontrol activity of P. elgii SD17 was confirmed. In the growth chamber tests, the GR formulation was effective against brown patch and Pythium blight with similar level of disease severity compared to each of the standard fungicides at the application rates of 10 g/$m^2$ or above. In the field tests, compared to each untreated control, the GR formulation also effectively controlled Pythium blight, brown patch and large patch at all the application rates of 5, 10 and 20 g/$m^2$, respectively, without significant response by the application rates. However its performance was inferior to each of the standard chemical fungicides. Based on these results, we consider this GR formulation of P. elgii SD17 as an effective biocontol agent to suppress Pythium blight, brown patch and large patch of turf grasses in Korea.

Purification and Characterization of a Major Extracellular Chitinase from a Biocontrol Bacterium, Paenibacillus elgii HOA73

  • Kim, Yong Hwan;Park, Seur Kee;Hur, Jin Young;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.318-328
    • /
    • 2017
  • Chitinase-producing Paenibacillus elgii strain HOA73 has been used to control plant diseases. However, the antimicrobial activity of its extracellular chitinase has not been fully elucidated. The major extracellular chitinase gene (PeChi68) from strain HOA73 was cloned and expressed in Escherichia coli in this study. This gene had an open reading frame of 2,028 bp, encoding a protein of 675 amino acid residues containing a secretion signal peptide, a chitin-binding domain, two fibronectin type III domains, and a catalytic hydrolase domain. The chitinase (PeChi68) purified from recombinant E. coli exhibited a molecular mass of approximately 68 kDa on SDS-PAGE. Biochemical analysis indicated that optimum temperature for the actitvity of purified chitinase was $50^{\circ}C$. However, it was inactivated with time when it was incubated at $40^{\circ}C$ and $50^{\circ}C$. Its optimum activity was found at pH 7, although its activity was stable when incubated between pH 3 and pH 11. Heavy metals inhibited this chitinase. This purified chitinase completely inhibited spore germination of two Cladosporium isolates and partially inhibited germination of Botrytis cinerea spores. However, it had no effect on the spores of a Colletotricum isolate. These results indicate that the extracellular chitinase produced by P. elgii HOA73 might have function in limiting spore germination of certain fungal pathogens.

Antibacterial activity of isolated bacteria against Propionibacterium acnes causing acne vulgaris (여드름을 유발하는 Propionibacterium acnes에 대한 분리 세균들의 항균활성)

  • Lee, Da-Sol;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.272-279
    • /
    • 2018
  • This study was carried out to evaluate antimicrobial activity of isolated bacteria from various soils against two strains of Propionibacterium acnes causing acne vulgaris. Among several hundreds of bacterial strains, Paenibacillus elgii DS381, Paenibacillus elgii DS1515, Burkholderia gladioli DS518, and Streptomyces lienomycini DS620 showed high antimicrobial activities against the strains of P. acnes. All isolated bacteria showed 15.5 to 34.3 mm inhibition zone diameter in an agar well diffusion test, and especially DS620 showed the highest inhibition zone diameters (28.3~34.3 mm). Antibacterial substances were expected as lipopeptide (pelgipeptin and paenipeptin) from strains DS381 and DS1515, protease from DS518, and anthracycline antibiotic (daunomycinone) from DS620, and all these showed very low minimum inhibitory concentration [DS381 and DS1515 (0.078 mg/ml), DS518 (0.312 mg/ml), DS620 (0.000078 mg/ml)] against P. acnes. These antibacterial substances could completely kill P. acnes within 24 h in a time-kill assay. These results suggest that antibacterial substances produced by these bacteria may be utilized as useful antimicrobial agent against P. acnes and treatment medicine for acne vulgaris.

Isolation and Characterization of a Paenibacillus incheonensis YK5 with Antimicrobial Activity aginst MRSA (항MRSA 활성을 보이는 Paenibacillus incheonensis YK5의 분리 및 특성)

  • Yoon, Young-Jun;Kim, Hye-Yoong;Lee, Tae-Soo;Kim, Jung-Wan
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.326-332
    • /
    • 2008
  • Various bacteria were isolated from Korean soil samples based on their capability inhibiting the growth of MRSA strains. Among them, strain YK5 with the highest activity was a Gram positive sporulative bacillus with motility. It did not produce indole and no acid was formed from mannitol by the bacterium. The 16S rRNA sequence of the strain showed $95{\sim}98%$ homology with those of Paenibacillus spp.. The bacterial isolate shared the highest homology with that of P. elgii (98%), but was named as Paenibacillus incheonensis YK5 due to differences in physiological properties. Butanol extract of the P. incheonensis YK5 culture grown in SST medium at $37^{\circ}C$ for 96 hr showed a broad antimicrobial activity against Gram-positive (MRSA and Streptococcus pneumoniae) and negative (Pseudomonas aeruginosa, Salmonella spp., Shigella spp., Escherichia coli, Klebsiella pneumoniae) pathogenic bacteria and fungi (Cryptococcus neoformans and Trichophyton). The antimicrobial activity in the crude extract was stable in a broad range of temperature and pH, $20{\sim}100^{\circ}C$ and $3.0{\sim}6.0$, respectively. Therefore, the antimicrobial activity of P. incheonesis YK5 had potential as a novel antibiotics for pathogens including MRSA.