• Title/Summary/Keyword: Paenibacillus MBT213

Search Result 2, Processing Time 0.015 seconds

Characterization of Paenibacillus sp. MBT213 Isolated from Raw Milk and Its Ability to Convert Ginsenoside Rb1 into Ginsenoside Rd from Panax ginseng

  • Renchinkhand, Gereltuya;Cho, Soo Hyun;Urgamal, Magsar;Park, Young W;Nam, Joong Hyeon;Bae, Hyung Churl;Song, Gyu Yong;Nam, Myoung Soo
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.735-742
    • /
    • 2017
  • This study was conducted to isolate and characterize Paenibacillus sp. MBT213 possessing ${\beta}$-glucosidase activity from raw milk, and examine the enzymatic capacity on the hydrolysis of a major ginsenoside ($Rb_1$). Strain MBT213 was found to have a high hydrolytic ability on ginsenoside $Rb_1$ by Esculin Iron Agar test. 16S rDNA analysis revealed that MBT213 was Paenibacillu sp. Crude enzyme of MBT213 strain exhibited high conversion capacity on ginsenoside $Rb_1$ into ginsenoside Rd proven by TLC and HPLC analyses. The API ZYM kit confirmed that Paenibacillu sp. MBT213 exerted higher ${\beta}$-glucosidase and ${\beta}$-galactosidase activity than other strains. Optimum pH and temperature for crude enzyme were found at 7.0 and $35^{\circ}C$ in hydrolysis of ginsenoside $Rb_1$. After 10 d of optimal reaction conditions for the crude enzyme, ginsenoside $Rb_1$ fully converted to ginsenoside Rd. Ginseng roots (20%) were fermented for 14 d, and analyzed by HPLC showed that amount of ginsenoside $Rb_1$ significantly decreased, while that of ginsenoside Rd was significantly increased. The study confirmed that the ${\beta}$-glucosidase produced by Paenibacillus sp. MBT213 can hydrolyze the major ginsenoside $Rb_1$ and convert to Rd during fermentation of the ginseng. The ${\beta}$-glucosidase activity of this novel Paenibacillus sp. MBT213 strain may be utilized in development of variety of health foods, dairy foods and pharmaceutical products.

Cytokine modulation in Raw 264.7 macrophages treated with ginseng fermented by Penibacillus MBT213

  • Son, Ji Yoon;Renchinkhand, Gereltuya;Bae, Hyoung Churl;Paik, Seung-Hee;Lee, Jo Yoon;Nam, Myoung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.769-777
    • /
    • 2018
  • The fermentation of Panax ginseng yields many compounds including ginsenosides that have various biological functions. The objective of this study was to investigate the modulation of nitric oxide (NO), Interleukin (IL)-6 and tumor necrosis factor $(TNF)-{\alpha}$ in Raw 264.7 cells treated with ginseng fermented by Penibacillus MBT213. Nitric oxide production in the Raw 264.7 cells treated for 24 hours with fermented ginseng at 3, 7, and 14 days after the treatment decreased to 74, 43, and 36%, respectively, compared with the positive control. The production of IL-6 was inhibited in all the cells treated with fermented ginseng at 3, 7, and 14 days after the treatment except for the positive control. The $TNF-{\alpha}$ production in the Raw 264.7 cells treated with fermented ginseng for 6 hours at 3, 7, and 14 days after the treatment was about 40,000, 85,000 and 65,000 pg/mL, respectively. Moreover, the $TNF-{\alpha}$ production in the Raw 264.7 cells treated with fermented ginseng for 24 hours at 7 and 14 days after the treatment was about 160,000 and 180,000 pg/mL, respectively. However, $TNF-{\alpha}$ production was inhibited in the Raw 264.7 cells at 6 and 12 hours after the treatment with fermented ginseng. herefore, it was confirmed that the immunological activity of the Raw 264.7 macrophages was affected by the treatment with fermented ginseng. It was concluded that ginseng fermented by Paenibacillus MBT213 possesses a potential anti-inflammatory activity and could be used as an ingredient in functional foods and pharmaceutical products.