• Title/Summary/Keyword: Paddy-upland rotation

Search Result 44, Processing Time 0.032 seconds

Growth and yield characteristics of foxtail millet, proso millet and sorghum affected by paddy-upland rotation systems

  • Kim, Young Jung;Yoon, Seong Tak;Yang, jing;Han, Tae Kyu;Jeong, In Ho;Yu, Je Bin;Ye, Min Hee;Shim, Kang Bo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.347-347
    • /
    • 2017
  • This study is performed to investigate the optimal cropping systems to allow cultivation of upland crops to the paddy rice land. This experiment was conducted at Anseong-si Gyeonggi province of Korea in 2015. In order to investigate growth and yield characteristics of foxtail millet, proso millet and sorghum by different paddy-upland rotation systems, three crops foxtail millet, proso millet and sorghum with four varieties of Samdachal, Samdamae, Kyeongkwan1, Hwanggeumjo in foxtail millet, Leebaekchal, Manhongchal, Hwangsilchal, Hwanggeumgijang in proso millet and Nampungchal, Moktaksusu, Aneunbangisusu, Hwanggeumchal in sorghum were examined. Four paddy-upland rotation systems of paddy-upland rotation, paddy-upland-upland rotation, paddy-upland-upland-upland rotation, and upland-paddy-upland rotation system were tested. Days from seeding to heading and ripening of foxtail millet was the shortest in the paddy-upland-upland-upland rotation system, but proso millet and sorghum did not show statistical difference among four rotation systems. In the average of culm length, paddy-upland-upland-upland rotation system showed the highest culm length in foxtail millet (141.5cm), proso millet (159.6cm) and sorghum (138.6cm) respectively among four paddy-upland rotation systems. In average yield per 10a, foxtail millet and proso millet showed the highest each 234.3kg/10a, 176.2kg/10a in paddy-upland-upland-upland rotation system, whereas sorghum was the highest 221.2kg/10a in paddy-upland-upland rotation system. The most suitable crop and varieties in paddy-upland rotation system was judged to be sorghum among three crops and suitable varieties were Samdachal in foxtail millet, Leebaekchal in proso millet and Nampungchal in sorghum respectively.

  • PDF

Crop Combinations and Rotation Years for Paddy-Upland Cropping System in Middle Part of Korea (중부지역 답전윤환에 적합한 전작물 윤환년수와 논작부체계)

  • 김정일;이경희;오용비;오윤진;이정기
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.4
    • /
    • pp.304-311
    • /
    • 1993
  • To find out suitable crops and their rotation years with rice for paddy-upland rotation, continuous rice cropping and rice with 1, 2 and 3 years cropping of upland crops(soybean, maize and job's tears) were tested for four years from 1989 to 1992. Rice yield, when averaged over rotation years for each crop, was increased ranging from 7% to 12% when compared with that of continuous rice cropping. With every crop, rice yield of 2 year upland rotation was higher than that of 1 year upland rotation, but rice quality seemed to deteriorate in paddy-upland rotation. When considering yields of the upland crops, 1 year rotation was the best condition for soybean and job's tears, with 3 years rotation being the best for maize. In paddy-upland rotation, number of weed species and its occurrence rates were reduced in paddy and upland condition and the reduction rates in paddy condition were higher than those in upland condition. Physical properties of soil were improved in paddy-upland rotation and airphase seemed to increase with increasing upland period.

  • PDF

Change of Weed Community in Paddy - Upland Rotation (답전윤환(畓田輪換)에 따른 잡초(雜草) 발생(發生) 변화(變化))

  • Ku, Y.C.;Seong, K.Y.;Song, D.Y.;Lee, S.B.;Huh, I.P.
    • Korean Journal of Weed Science
    • /
    • v.17 no.2
    • /
    • pp.157-162
    • /
    • 1997
  • This study was conducted to investigate the change of weed community on paddy-upland rotation in 1996. In paddy-upland rotation, dominant weed species in paddy condition were Cyperous amuricus, Echinochloa crus-galli, Rotara indica and Lindernia procumbens. They were E. crusgalli, Digitaria sanguinalis and C. amuricus in upland condition. The number of weed occurrence on paddy and upland rotation reduced about 74-78% as compared with continuous paddy and upland condition. Similarity coefficient and Simpson index on paddy and upland rotation was 8-64, 0.34-0.35, respectively.

  • PDF

Effects of Paddy-Upland Rotation on Soil Characteristics and Crop Productivity in Rice Fields on Reclaimed Tidal land (신간척지 벼 재배 농지의 답전윤환에 따른 토양 특성 및 작물 생산성 변화)

  • Oh, Yang-Yeol;Kim, Young-Joo;Lee, Su-Hwan;Ryu, Jin-Hee;Kim, Sun;Lee, Jung-Tae;Jun, Jae-Beum;Kim, Kil-Young
    • Journal of Environmental Science International
    • /
    • v.27 no.8
    • /
    • pp.641-650
    • /
    • 2018
  • Paddy-upland rotation system is one of the important cropping system for improving soil quality and crop productivity. we conducted to investigate the effect of paddy-upland rotation system on soil properties and crop productivity in reclaimed tidal land. The paddy-upland rotation could be effective to conserve soil water contents and prevent from salt damage when cultivating upland crops. The first two years of maize cultivation after rice cultivation could be effective to secure stable production. However, in case of soybean crop, the rotation effect might be lower than that of maize. In the first year, the yield of soybean was 214 kg/10a. In the second and third year, the yields of soybean decreased consecutively to 152, 123 kg/10a respectively. In this paper, it would be suggested that maize be cultivated for up to two years and soybean be cultivated for one year after rice crop grown in reclaimed tidal land. This study could be provide basic data of the physico-chemical properties applicable to paddy-upland rotation system at reclaimed tidal lands.

Growth and Yield Characteristics of Foxtail Millet, Proso Millet, Sorghum and Rice in Paddy-Upland Rotation (답전윤환에서의 조, 수수, 기장 및 벼의 생육 및 수량)

  • Yoon, Seong-Tak;Kim, Young-Jung;Jeong, In-Ho;Han, Tae-Kyu;Yu, Je-Bin;Ye, Min-Hee;Cho, Young-Son;Kang, Hang-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.3
    • /
    • pp.300-307
    • /
    • 2015
  • In order to develop optimum paddy-upland rotation system, we evaluated the 1st and the 2nd upland growth and yield characteristics of foxtail millet, proso millet, sorghum rotated from paddy field and rice rotated from upland in paddy-upland rotation. Average number of ears per hill was 3.3 in the 2nd upland cultivation. The value was greater by 1 ear as compared to 1st upland cultivation (2.2 ears per hill). In average yield per 10a, the 2nd upland cultivation showed 220.3 kg, 23% increased yield compared to the 1st upland cultivation (179 kg per 10a). In average number of ears per hill, the 2nd upland cultivation showed 8.3 ears, increased 4 ears compared to the 1st upland cultivation (4.2 ears per hill). In average yield per 10a, the 2nd upland cultivation showed 152.8 kg, 16.8% increased yield compared to the 1st upland cultivation (130.8 kg per 10a). In average days from seeding to heading of 5 sorghum varieties, there were no significant difference between the 1st (68.6 days) and the 2nd (67.4 days) upland cultivation rotated from paddy field. In the average number of grains per ears, the 2nd upland cultivation showed 2,931.6 grains per ear, 12% increased compared to the 1st upland cultivation (2,619.6 grains per ears). Average yield per 10a of sorghum in the 2nd upland cultivation showed 242.3 kg, 4.6% increased compared to the 1st upland cultivation (231.7 kg per 10a). In growth and yield characteristics of rice in paddy-upland rotation, culm length in paddy-upland-paddy plot showed 82.9 cm, 7.3 cm longer compared to the continuous rice paddy field (75.6 cm). Ear length was also 1 cm longer than that of the continuous rice paddy field. In average number of ears per hill, paddy-upland-paddy plot showed 25.0 ears, 4.3 ears more than that of the continuous rice paddy field (20.7 ears per hill). In average yield of rice per 10a, the paddy-upland-paddy rotation plot showed 526.8 kg, 9.8% higher yield compared to the continuous rice paddy field (479.9 kg per 10a).

Disease and insect damage, growth and yield of sorghum, foxtail millet between rotational upland and continuing upland field

  • Yu, Je Bin;Yoon, Seong Tak;Yang, jing;Han, Tae Kyu;Jeong, In Ho;Kim, Young-Jung;Ye, Min Hee;Lee, Gil Jun;Cho, Soo Been;Lee, Young Kyung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.349-349
    • /
    • 2017
  • This study was performed in order to investigate disease, insect damage, growth and yield characteristics of green maize by organic paddy-upland rotation system. This experiment also was to select optimum variety for organic paddy-upland rotation cultivation. This experiment was conducted at Anseong-si Gyeonggi province of Korea in 2016. The varieties used in this study are green maize of total 8 varieties. Green maize was planted at rotational upland field and continuing upland field and tested for comparison. In case of average occurrence of 4 major diseases for green maize, rotational upland field was higher than that of continuing upland field. Heukjinjuchal and Daehakchal were the lowest occurrence by less than 2% among 8 varieties. Average damage of 8 varieties by Ostrinia furnacalis larva, which is the main pest in green maize was higher in rotational upland field than that of continuing upland field. Chalok 4 and Heugjeom 2 were judged to be resistant varieties to 4 major diseases among 8 varieties. The average yield of green maize per 10a in rotational upland field decreased to 85% level of continuing upland field and Chalok 4 showed the highest yield by 789.0 kg/10a among 8 varieties. The most suitable varieties in organic paddy-upland rotation system were judged to be Chalok 4, Heukjinjuchal and Heukjeom 2.

  • PDF

Disease, Insect Damage and Growth Characteristics of Green Maize between Rotational Upland Field and Continuing Upland Field in order to Select Optimum Varieties for Paddy-Upland Rotation System (답전윤환 적합품종 선발을 위한 유기농 풋옥수수의 윤환밭과 연속밭의 병충해, 생육 및 수량 특성)

  • Yu, Je-Bin;Yoon, Seong-Tak;Yang, jing;Ye, Min-Hee;Lee, Gil-Jun;Cho, Soo-Been;Lee, Young-Kyung;Han, Kwang-Seop;Baek, Seung-Woo;Kim, Byung-Ryun;Kim, Soon-Il;Kim, Kun-Woo
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.387-401
    • /
    • 2017
  • This study was performed in order to investigate disease, insect damage, growth and yield characteristics of green maize by organic paddy-upland rotation system. This experiment also was to select optimum variety for organic paddy-upland rotation cultivation. This experiment was conducted at Anseong-si Gyeonggi province of Korea in 2016. The varieties used in this study are green maize of total 8 varieties. Green maize was planted at rotational upland field and continuing upland field and tested for comparison. In case of average occurrence of 4 major disease for green maize, rotational upland field was higher than that of continuing upland field. Heukjinjuchal and Daehakchal were the lowest occurrence by less than 2% among 8 varieties. Average damage of 8 varieties by Ostrinia furnacalis larva, which is the main pest in green maize was higher in rotational upland field than that of continuing upland field. Chalok 4 and Heugjeom 2 were judged to be resistant varieties to 4 major disease among 8 varieties. The average yield of green maize per 10a in rotational upland field decreased to 85% level of continuing upland field and Chalok 4 showed the highest yield by 789.0 kg/10a among 8 varieties. The most suitable varieties in organic paddy-upland rotation system were judged to be Chalok 4, Heukjinjuchal and Heukjeom 2.

Relatedness of Naturalized Bradyrhizobium japonicum Populations with Soil Physico-Chemical Characteristics as Affected by Paddy-Upland Rotation (답전윤환에 따른 토착 Bradyrhizobium japonicum의 서식밀도와 토양 이화학성과의 관계)

  • Park, Chang-Young;Youn, Moon-Tae;Choi, Sang-Uk;Ha, Ho-Sung;Kang, Ui-Gum
    • Applied Biological Chemistry
    • /
    • v.40 no.5
    • /
    • pp.438-441
    • /
    • 1997
  • The relatedness of naturalized Bradyhizobium japonitum populations with soil physico-chemical characteristics as affected by paddy rice-upland soybean rotation cropping with conventional and none fertilization in Chilgog clay loam soils were determined as follows. The populations of B. japonicum in soils were increased from about $10^1$ in continuous paddy upto $10^1cells/g.soil$ only in one-year rotation of upland use with soybean cropping. Compared to the densities in plots of conventional fertilization, those in none fertilization were high ranging from 1.9 to 10 fold in 2-year upland use rotation and both in 3-year upland use rotation and 4-year upland use, respectively. The populations were positively correlated with soil organic matter $contents(r=0.83^*),\;Ca/K(r=0.74^*),\;and(Ca+Mg)/K(r=0.72^*)$ and were negatively correlated with soil $hardness(r=-0.73^*)$. And the soil populations increased by paddy-upland rotation resulted in superior symbiotic potentials to those in continuous paddy use in terms of nodule mass, nitrogenase activity, and soy-bean shoot dry weight.

  • PDF

Assessment on Water Movement in Paddy-Upland Rotation Soil Scheduled for Ginseng Cultivation (답전윤환 인삼재배 예정지 토양의 물 이동특성 평가)

  • Hur, Seung-Oh;Lee, Yun-Jeong;Yeon, Byung-Ryul;Jeon, Sang-Ho;Ha, Sang-Geon;Kim, Jeong-Gyu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.3
    • /
    • pp.204-209
    • /
    • 2009
  • This study was conducted to assess water movement in paddy-upland rotation soil scheduled for ginseng cultivation through the measurement of infiltration and permeability of soil water. Soil sample was divided with four soil layers. The first soil layer (to 30cm from top soil) was loamy sand, the second and the third soil layers (30$\sim$70 ㎝) were sand, and the fourth (< 120 ㎝) was sandy loam. The soil below 130 ㎝ of fourth soil layer was submerged under water. The shear strength, which represents the resisting power of soil against external force, was 3.1 kPa in the first soil layer. This corresponded to 1/8 of those of another soil layer and this value could result in soil erosion by small amount of rainfall. The rates of infiltration and permeability depending on soil layers were 39.86 cm $hr^{-1}$ in top soil, 2.34 cm $hr^{-1}$ in 30$\sim$70 ㎝ soil layer, 5.23 cm $hr^{-1}$ and 0.18 cm $hr^{-1}$ in 70$\sim$120 ㎝ soil layer, with drain tile, and without drain tile, respectively. We consider that ground water pooled in paddy soil and artificial formation of soil layer could interrupt water canal within soil and affect negatively on water movement. Therefore, we suggest that to drain at 5 m intervals be preferable when it makes soil dressing or soil accumulation to cultivate ginseng in paddy-upland rotation soil to reduce failure risk of ginseng cultivation.

Effects of Paddy-Upland Rotation Systems on Nutrient Balance and Distribution in Soil Profile (답전윤환(畓田輪換) 체계(體系)에 따른 토양(土壤)의 층위별(層位別) 양분분포(養分分布) 및 양분수지(養分收支))

  • Ahn, Sang-Bae;Motomatsu, T.;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.2
    • /
    • pp.98-104
    • /
    • 1994
  • Effects of paddy-upland rotation system on nutrients distribution in soil profile and nutrient balance were studied in paddy fields from 1989 to 1993. The obtained results are summarized as follows. 1. $NO_3{^-}-N$, Av.$P_2O_5$, Ex.-K, and EC were high by small extent in surface layer of 0~20cm soil depth without the sign of salt movement to deeper layers. On the contrary Ex.-ca, Ex.-Mg, and pH became high with increase of soil depths. 2. $NO_3{^-}-N$, Av.$P_2O_5$, Ex.-K, and EC in surface soil were high in the order of Converted, Paddy-Upland Rotation, Potato-Chinese Cabbage>2 Year, Rotation, Potato-Chinese Cabbage>Converted, Paddy-Upland Rotation, Soybean>Continous Paddy, which responded well to fertilizer application rates. On the other hand Ex.-Ca, Ex.-Mg, and pH in whole layers were high in the order of Converted, Paddy-Upland Rotation, Soybean>Converted, Paddy-Upland Rptation, Potato-Chinese Cabbage>2 Year, Rotation, Potato-Chinese Cabbage>Continuous Paddy, which largely depended on plant absorption. 3. Nutrient balance in upland cropping system cultivating potato and Chinese cabbage showed that the input of chemical fertilizer of nitrogen and potassium was less than the plant uptake, while it was reverse for phosphorus with much gap between fertilizer input and plant uptake. Therefore, phosporous was expected to be accumulated by 27kg/10a every year. 4. Nutrient balance in upland cropping system cultivating soybean showed that nitrogen was not deficient to soybean crops even the chemical fertilizer input was less than plant uptake because of nitrogen fixation by rhizobia. However, there was about 1kg/10a deficit of potassium, which resulted dificiency symptom in the middle stage of soybean growth. For phosphorous there was excess of 4kg/10a, which was expected to be short for maintaining phosphorous fertility of upland soils.

  • PDF