• 제목/요약/키워드: Packing stress

검색결과 88건 처리시간 0.022초

A study on calculation of friction coefficient and packing stress using static diagnosis test for a balanced globe valve in nuclear power plants

  • Kim, Jaehyung;Lim, Taemook;Ryu, Ho-Geun
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2509-2522
    • /
    • 2021
  • A valve assembly used in nuclear power plants must be qualified and supervised. New technical standards such as ASME QME-1 2007 particularly require detailed qualification using experiment and analysis. Particularly, diagnostic tests and engineering studies are required for qualification of ASME QME-1 2007. Among these studies, the research on the measurement of friction coefficient and packing stress is important. The irregular change of packing stress along the stroke distance occurs because of the abnormal phenomenon, which must be found and studied with quantitative methods. Packing stress should be analyzed conservatively through experimentation and analysis. In this study, various formulas were applied to measure and calculate coefficient of friction and packing stress. This study can be used in relation to qualification and supervision of packing materials. And the calculation using static diagnosis test can be used to find the packing frictional force in dynamic diagnosis test with flow pressure in a pipe. This study has made it possible to reliably consider packing frictional force generated in a valve body. And so, it is believed that more margin can be secured when evaluating the capacity of valve actuator by applying the accurate frictional force generated in the valve assembly.

LPG 충전노즐용 O-링과 패킹의 응력거동해석에 관한 연구 (Stress Behavior Analysis of O-rings and Packing for a LPG Filling Nozzle)

  • 김청균
    • Tribology and Lubricants
    • /
    • 제22권1호
    • /
    • pp.20-25
    • /
    • 2006
  • The stress behavior analysis of a-rings and packing for a LPG filling unit has been presented using a finite element analysis technique by non-linear MSC/MARC program. The sealing performance and endurance of a-rings and packing are affected by working conditions such as filling pressure, friction coefficient, compression ratio, and material properties. The elastomeric polymers of O-rings and packing are nitrile butadiene rubber (NBR) and polytetrafluoroethylene (PTFE), which are selected as proper materials of a-rings and packing based on the stress analysis results. The calculated FEM results showed that the proper material of O-ring is NBR as a secondary sealing component and the recommended material of packing is PTFE as a primary sealing unit during a LPG filling process.

사출/압축 성형 Center-gated 터스크에서의 잔류 응력과 복굴절의 수치 해석 (II) - 공정조건의 영향 - (Numerical Analysis of Residual Stresses and Birefringence in Injection/Compression Molded Center-gated Disks (II) - Effects of Processing Conditions -)

  • 이영복;권태헌;윤경환
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2355-2363
    • /
    • 2002
  • The accompanying paper, Part 1, has presented the physical modeling and basic numerical analysis results of both the flow-induced and thermally-induced residual stress and birefringence in injection molded center gated disks. The present paper, Part II, has attempted to investigate the effects of various processing conditions of injection/compression molding process on the residual stress and birefringence. The birefringence is significantly affected by injection melt temperature, packing pressure and packing time. Birefringence in the shell layer increases as melt temperature gets lower. The inner peak of birefringence increases with packing time and packing pressure. On the other hand, packing pressure, packing time and mold wall temperature affect the thermally-induced residual stress rather significantly in the shell layer, but insignificantly in the core region. Injection/compression molding has been found to reduce the birefringence in comparison with the conventional injection molding process. In particular, mold closing velocity and initial opening thickness in the compression stage of injection/compression molding process have significant effect on the flow-induced birefringence, but not on tile thermal residual stress and the thermally induced birefringence.

유한요소해석을 이용한 유압브레이커용 우레탄 패킹의 성능분석 (Performance Analysis of Urethane Packing in the Hydraulic Breaker by a Finite Element Method)

  • 신현우;홍종우;최이광
    • 한국정밀공학회지
    • /
    • 제33권2호
    • /
    • pp.139-147
    • /
    • 2016
  • Performances of urethane packing in the hydraulic breaker were analyzed using a finite element method. Because of high temperature and high pressure in the hydraulic breaker, it is better to use urethane rather than rubber as a packing material. We obtained the physical properties of urethane at elevated temperature by the tensile test. We analyzed buffer seal and U-packing maintaining the pressure and preventing oil leakage. Deformation, stress distribution, contact length, contact pressure of packing at each pressure step were obtained using finite element analysis. As the temperature increases, stress and contact force tend to decrease at low pressure. As the gap between piston and cylinder increases, contact length and contact forces decrease. Consequently, it is possible to design the packing section using these analyses, and construct a system to predict the possibility of oil leakage in the hydraulic breaker.

스위블 연결구용 멀티접촉패킹의 밀봉특성에 관한 유한요소해석 (FE Analysis on the Sealing Characteristics of Multi-Contact Packing for Swivel Joint)

  • 김청균
    • 한국가스학회지
    • /
    • 제18권4호
    • /
    • pp.51-55
    • /
    • 2014
  • 본 연구에서는 한곳에서 접촉하는 오링과 여러 곳에서 접촉하는 멀티접촉패킹에 대한 밀봉특성을 유한요소법으로 해석하였다. FEM 해석결과에 의하면, LP가스압력 1.8MPa을 공급하였을 때 기존의 오링에서는 밀봉성에 관련된 2.5MPa의 수직접촉 최대응력을 발생하였다. 반면에 새롭게 고안된 멀티접촉패킹에서는 3.01MPa이 발생하여 20.4%나 높아진 밀봉성이 향상되었음을 알 수 있다. 또한, 밀봉내구 안전성에 밀접한 관련이 있는 압출현상은 기존 오링의 경우 1.62MPa의 가스압력에서 발생되었지만, 멀티접촉패킹에서는 1.8MPa 정도로 가스내압을 올려도 압출현상이 발생되지 않는 것은 오랫동안 밀봉작용을 한다는 것을 의미한다. 따라서 밀봉성과 내구안전성을 높게 요구할 때는 한곳에서 접촉하는 기존의 오링보다는 여러 곳에서 접촉하는 멀티접촉패킹을 사용하는 것이 유리함을 알 수 있다.

이방성 섬유의 배열이 복합재료의 응력에 미치는 영향 (Effects of Anisotropic Fiber Packing on Stresses in Composites)

  • 이정기;이형민
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1284-1296
    • /
    • 2004
  • In order to investigate effects of anisotropic fiber packing on stresses in composites, a Volume Integral Equation Method is applied to calculate the elastostatic field in an unbounded isotropic elastic medium containing multiple orthotropic inclusions subject to remote loading, and a Mixed Volume and Boundary Integral Equation Method is introduced for the solution of elastostatic problems in unbounded isotropic materials containing multiple anisotropic inclusions as well as one void under uniform remote loading. A detailed analysis of stress fields at the interface between the isotropic matrix and the central orthotropic inclusion is carried out for square, hexagonal and random packing of orthotropic cylindrical inclusions, respectively. Also, an analysis of stress fields at the interface between the isotropic matrix and the central orthotropic inclusion is carried out, when it is assumed that a void is replaced with one inclusion adjacent to the central inclusion of square, hexagonal and random packing of orthotropic cylindrical inclusions, respectively, due to manufacturing and/or service induced defects. The effects of random orthotropic fiber packing on stresses at the interface between the isotropic matrix and the central orthotropic inclusion are compared with the influences of square and hexagonal orthotropic fiber packing on stresses. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with multiple orthotropic inclusions and one void, it will be established that these new methods are very accurate and effective for investigating effects of general anisotropic fiber packing on stresses in composites.

CPVC 밸브소켓 체결토크가 누수발생에 미치는 영향 (CPVC Valve Tightening Torque Impact Sockets on the Leaks)

  • 임춘기;백은선
    • 한국화재소방학회논문지
    • /
    • 제30권4호
    • /
    • pp.46-58
    • /
    • 2016
  • 본 연구는 스프링클러설비용 소방용 합성수지배관에서 누수원인으로 예측되는 과도 조임에 따른 밸브 소켓 나사부의 영향을 분석하기 위하여 컴퓨터 시뮬레이션을 이용하여 밸브소켓 체결토크가 $10{\sim}130N{\cdot}m$일 때 나사부에 걸리는 응력, 변형률, 변위, Von mises stress 및 수밀용 고무패킹에 걸리는 압축응력을 예측하였으며, 이를 검증하기 위하여 토크미터를 이용한 체결토크별 접속 나사산 수, 밸브소켓과 고무패킹의 변형상태 및 수격실험을 실시하여 적정한 체결토크 값과 고무패킹 압축응력 값을 연구하였다. 본 연구 결과가 소방용 합성수지배관 누수방지를 위한 관련 규격 또는 기술기준 개정에 필요한 자료로 활용될 수 있도록 기대한다.

Modeling reaction injection molding process of phenol-formaldehyde resin filled with wood dust

  • Lee, Jae-Wook;Kwon, Young-Don;Leonov, A.I.
    • Korea-Australia Rheology Journal
    • /
    • 제20권2호
    • /
    • pp.59-63
    • /
    • 2008
  • A theoretical model was developed to describe the flow behavior of a filled polymer in the packing stage of reaction injection molding and predict the residual stress distribution of thin injection-molded parts. The model predictions were compared with experiments performed for phenol-formaldehyde resin filled with wood dust and cured by urotropine. The packing stage of reaction injection molding process presents a typical example of complex non-isothermal flow combined with chemical reaction. It is shown that the time evolution of pressure distribution along the mold cavity that determines the residual stress in the final product can be described by a single 1D partial differential equation (PDE) if the rheological behavior of reacting liquid is simplistically described by the power-law approach with some approximations made for describing cure reaction and non-isothermality. In the formulation, the dimensionless time variable is defined in such a way that it includes all necessary information on the cure reaction history. Employing the routine separation of variables made possible to obtain the analytical solution for the nonlinear PDE under specific initial condition. It is shown that direct numerical solution of the PDE exactly coincides with the analytical solution. With the use of the power-law approximation that describes highly shear thinning behavior, the theoretical calculations significantly deviate from the experimental data. Bearing in mind that in the packing stage the flow is extremely slow, we employed in our theory the Newtonian law for flow of reacting liquid and described well enough the experimental data on evolution of pressure.

성형조건에 따른 캐비티의 내압분포 분석 (An analysis of cavity pressure for various injection molding conditions)

  • 김동우;김수영;신광수;김도운;김기윤;류민영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.293-296
    • /
    • 2008
  • Injection molding operation consists of filling, packing, and cooling phase. The highest pressure is involved during the packing phase among the operation phases. Cavity pressure depends upon velocity to pressure switchover time and magnitude of packing pressure. The cavity pressure is directly related to stress concentration in the cavity of mold. Thus the observation and control of cavity pressure is very important to prevent mold cracking. In this study, cavity pressures were observed for operational conditions using the commercial CAE software, Moldflow. Operational conditions were velocity to pressure switchover time and packing pressure. Cavity pressures were also measured directly during injection molding. Simulation and experimental results showed good agreement.

  • PDF

CFD 유동해석을 이용한 누설 저감을 위한 증기터빈용 플렉시블 패킹링 개발 (Development of Flexible Packing Ring in Steam Turbine for Reduction of Leakage by using CFD Flow Analysis)

  • 김진형;배준호;이창렬;김철
    • 한국정밀공학회지
    • /
    • 제30권7호
    • /
    • pp.741-748
    • /
    • 2013
  • A conventional packing ring was designed with a large clearance to prevent damage due to the vibration of the rotor, which can lead to an increase in steam leakage. In this study, a flexible packing ring using winding springs was developed to prevent damage to the rotor teeth by minimizing vibration, while maintaining a smaller clearance than that of conventional rotor designs. Theoretical analysis and finite element analysis (FEA) were used to design the winding spring to satisfy the specified allowable stress limit and minimum load requirements. The shape of the winding spring was designed by applying curves to the center and end parts of a flat spring. Computational fluid dynamics (CFD) analysis was used to predict the leakage of the flexible packing ring. Flow rate measurement tests were performed to verify the leakage reduction efficiency and the reliability of the CFD analysis.