• Title/Summary/Keyword: Packet reassembly

Search Result 10, Processing Time 0.026 seconds

Development of Fragmentation Management Simulator for 6LoWPAN (6LoWPAN 단편화 관리 기법 시뮬레이터 개발)

  • Seo, Hyun-Gon;Han, Jae-Il
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.191-198
    • /
    • 2008
  • 6LoWPAN (IPv6 Low-power Wireless Personal Area Network) is IPv6 packets transmission technology at Sensor network over the IEEE 802.15.4 Standard MAC and Physical layer. Adaptation layer between IP layer and MAC layer performs fragmentation and reassembly of packet for transmit IPv6 packets. RFC4944, IETF 6LoWPAN WG standard document define packet fragmentation and reassembly. In this paper, we propose the 6PASim (6LoWPAN Packet Simulator) to perform IPv6 packet fragmentation and reassembly for performance evaluation. The 6PASim consist of two parts. One is Packet_Transmit_module that makes IEEE 802.15.4 frames the IPv6 packet from upper layer, and transmit its. and the another is Packet_Receive_module that reassembles transferred frames and completes original IPv6 packets. we can evaluate frame transmit rate and amount of control message through 6PASim. The result of simulation shows the SRM (Selective Retransmission Method) scheme provider better performance than IRM (Immediate Retransmission Method) scheme.

  • PDF

Fragmentation Management Method for 6LoWPAN (6LoWPAN에서 단편화 관리 기법)

  • Seo, Hyun-Gon;Han, Jae-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.130-138
    • /
    • 2009
  • 6LoWPAN is IPv6 packets transmission technology at Sensor network over the IEEE 802.15.4 Standard MAC and Physical layer. Adaptation layer between IP layer and MAC layer performs fragmentation and reassembly of packet for transmit IPv6 packets. RFC4944, IETF 6LoWPAN WG standard document define packet fragmentation and reassembly. In this paper, we propose the IRM(Immediate Retransmission Method) and SRM(Selective Retransmission Method) to manage packet fragmentation and reassembly at 6LoWPAN. Each time destination receives a fragmented packet, it sends Ack message to the source node on IRM. However, on SRM, the destination node receives all fragmented packet, it sends Ack message or Nak message to the source node. In this case, Nak message include the dropped packet number. To compare the performance of the proposed schemes, we develop a simulator using C++. The result of simulation shows the proposed schemes provider better performance than RFC4944 standard scheme.

Implementation of AAL type5 protocol processor for processing of IP data packet (IP data packet을 처리하기 위한 AAL type5 프로토콜 프로세서 구현)

  • Park, Jae-Hyeon;Choi, Myung-Ryul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10b
    • /
    • pp.1379-1382
    • /
    • 2001
  • 본 논문에서는 ATM 망에서의 통합 네트워크 구현을 위한 IP data packet를 처리하기 위한 AAL type5 프로토콜 프로세서를 설계 및 구현하였다. AAL 계층의 중요 기능들은 ITU-T Recommendation 1.363과 1.363.5 에 근거하여 설계하였다. AAL 계층의 주요한 역할은 데이터의 Segmentation 및 셀의 Reassembly를 하는 것으로, Segmentation 과정에서는 상위 계층의 연속적인 데이터를 Segmentation하여 53-byte 크기의 ATM 셀을 구성하는 기능이다. Reassembly 과정에서는 들어오는 셀들을 연속적인 데이터로 만들어 AAL 계층 보다 상위 계층으로 전달하는 것이다. 이 과정에서 셀의 Header 를 확인한 후 crc-32를 통한 오류 검정을 거치게 되며, 데이터에 오류가 있을 경우에는 해당 셀을 버리고 오류가 없을 시에만 상위 계층으로 전달한다. 본 논문에서 구현한 AAL Type 5 프로세서는 향후 모든 Type의 data를 수용하는 칩 개발에 유용할 것으로 사료된다. 본 논문에서 원할한 테스트를 위해 데이터의 loop back 신호 DLB를 사용했다 VHDL 해석기로는 Synopsys 사의 VHDL Analyzer를 사용하였고, Design Compiler로 회로를 합성하였다.

  • PDF

Low-power 6LoWPAN Protocol Design (저 전력 6LoWPAN 프로토콜 설계)

  • Kim, Chang-Hoon;Kim, Il-Hyu;Cha, Jung-Woo;Nam, In-Gil;Lee, Chae-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.274-280
    • /
    • 2011
  • Due to their rapid growth and new paradigm applications, wireless sensor networks(WSNs) are morphing into low power personal area networks(LoWPANs), which are envisioned to grow radically. The fragmentation and reassembly of IP data packet is one of the most important function in the 6LoWPAN based communication between Internet and wireless sensor network. However, since the 6LoWPAN data unit size is 102 byte for IPv6 MTU size is 1200 byte, it increases the number of fragmentation and reassembly. In order to reduce the number of fragmentation and reassembly, this paper presents a new scheme that can be applicable to 6LoWPAN. When a fragmented packet header is constructed, we can have more space for data. This is because we use 8-bits routing table ill instead of 16-bits or 54-bits MAC address to decide the destination node. Analysis shows that our design has roughly 7% or 22% less transmission number of fragmented packets, depending on MAC address size(16-bits or 54-bits), compared with the previously proposed scheme in RFC4944. The reduced fragmented packet transmission means a low power consumption since the packet transmission is the very high power function in wireless sensor networks. Therefore the presented fragmented transmission scheme is well suited for low-power wireless sensor networks.

A Traffic Adaptive MAC Scheduling for Bluetooth with Maximized throughput and Guaranteed fairness

  • Kim Tae suk;Choi Sung-Gi;Kim Sehun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.418-425
    • /
    • 2002
  • Bluetooth is an emerging technology expected to provide users with short range, low cost, pico-cellular wireless connectivity. The access to the medium for Bluetooth is based on a Master driven Time Division Duplexing (TDD) scheme. A slave transmits packets in the reverse slot only after the master polls the slave (or transmits a packet to the slave) in a forward slot. The master transmits packets to a slave in even slots while the slave transmits packets to the master in an odd slot. The way in which the master schedules packets transmission to slaves or polls them determines system performance. In this paper. we propose a traffic adaptive MAC scheduling scheme for Bluetooth. The proposed scheme adopts the ISAR (Intelligent Segmentation and Reassembly) policy, which adjusts the packet size to the traffic patterns, to adapt the polling frequency to the traffic conditions. Also for achieving fairness among master-slave connections our scheme includes a priority policy assinging prioritised service tlimes to each connection. By considering a scenario where a Bluetooth master is used as wireless access point to the Internet, we show that our scheme improve the system throughput and average queue delay with regard to a naive Round Robin (RR) scheme.

  • PDF

A Study on the Usages of DDS Middleware for Efficient Data Transmission and Reception

  • Jeong, Yeongwook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.59-66
    • /
    • 2018
  • Data Distribution Service(DDS) provides the communications service programmers need to distribute time-critical data between embedded and/or enterprise devices or nodes. In this paper, I propose efficient methods for transmitting and receiving messages of various characteristics in real-time using DDS middleware. For high-frequency characteristic data, I describe several DDS packet types and various default and extended DDS QoS policies. In particular, the batching method is probably the best solution when considering several performance aspects. For large-capacity characteristic data. I will show a method using extended DDS QoS policies, a segmentation and reassembly method, and transmitting and receiving a large-capacity data with low priority method considering network conditions. Finally, I simulate and compare the result of performance for each methods. This results will help determine efficient methods for transmitting and receiving messages of various characteristics using DDS middleware.

Uplink Congestion Control over Asymmetric Networks using Dynamic Segment Size Control (비대칭 망에서 동적 세그먼트 크기 조정을 통한 상향링크 혼잡제어)

  • Je, Jung-Kwang;Lee, Ji-Hyun;Lim, Kyung-Shik
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.6
    • /
    • pp.466-474
    • /
    • 2007
  • Asymmetric networks that the downlink bandwidth is larger than the uplink bandwidth may cause the degradation of the TCP performance due to the uplink congestion. In order to solve this problem, this paper designs and implements the Dynamic Segment Size Control mechanism which offers a suitable segment size for current networks. The proposed mechanism does not require any changes in customer premises but suppress the number of ACKs using segment reassembly technique to avoid the uplink congestion. The gateway which adapted the Dynamic Segment Size Control mechanism, detects the uplink congestion condition and dynamically measures the bandwidth asymmetric ratio and the packet loss ratio. The gateway reassembles some of segments received from the server into a large segment and transmits it to the client. This reduces the number of corresponding ACKs. In this mechanism, the SACK option is used when occurs the bit error during the transmission. Based on the simulation in the GEO satellite network environment, we analyzed the performance of the Dynamic Segment Size Control mechanism.

Study on Architecture of ATM LSR Supporting VC Merging and Traffic Engineering over It (VC 머징이 가능한 ATM LSR의 구조 및 트래픽 엔지니어링 연구)

  • Chung, Ho-Yeon;Seo, Jae-Young;Baek, Jang-Hyun
    • IE interfaces
    • /
    • v.15 no.2
    • /
    • pp.152-158
    • /
    • 2002
  • The explosive growth of the internet traffic in the last few years has imposed tremendous stress on today's routers, particularly in the core network. Recently, ATM LSRs(Label Switching Router) are potentially capable of providing the highest forwarding capacity in the backbone Internet network. VC merging is a mechanism in an ATM LSR that allows many IP routes to be mapped to the same VC label, and provides a scalable mapping method that can support thousands of destinations. VC merging requires reassembly buffers so that cells belonging to different packets intended for the same destination do not interleave with each other. In this study, we propose an architecture of the ATM LSR which supports VC merging. We propose traffic control scheme called APD(Active Packet Discard) algorithm so that predicts and controls the congestion of the Internet traffic effectively. We study the performance of this algorithm using simulation.

Overhead Reduction Methods in Communication between 6LoWPAN and External Node (6LoWPAN 노드와 외부 노드의 통신 시에 오버헤드 감소 방법)

  • Choi, Dae-In;Enkhzul, Doopalam;Park, Jong-Tak;Kahng, Hyun-K.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.437-442
    • /
    • 2011
  • As an Internet Engineering Task Force (IETF) Working Group, 6LoWPAN is standardizing the IPv6 packet transfer technology in accordance with IEEE 802.15.4. It has completed two Request for Comments (RFC) documents, one of which, RFC 4944, addresses fragmentation, reassembly, and header compression technologies. In this paper, a communication mechanism is proposed to provide efficient communication between 6LoWPAN and external nodes. In this mechanism, the gateway between 6LoWPAN and external networks serves as the proxy gateway between nodes. The simulation was conducted using QualNet to compare the performance of the proposed mechanism and the existing RFC 4944 method. The comparative analysis of the proposed mechanism and the existing method showed that the proposed method performed better.

Channel-Adaptive Mobile Streaming Video Control over Mobile WiMAX Network (모바일 와이맥스망에서 채널 적응적인 모바일 스트리밍 비디오 제어)

  • Pyun, Jae-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.5
    • /
    • pp.37-43
    • /
    • 2009
  • Streaming video service over wireless and mobile communication networks has received significant interests from both academia and industry recently. Specifically, mobile WiMAX (IEEE 802.16e) is capable of providing high data rate and flexible Quality of Service (QoS) mechanisms, supporting mobile streaming very attractive. However, we need to note that streaming videos can be partially deteriorated in their macroblocks and/or slices owing to errors on OFDMA subcarriers, as we consider that compressed video sequence is generally sensitive to the error-prone channel status of the wireless and mobile network. In this paper, we introduce an OFDMA subcarrier-adaptive mobile streaming server based on cross-layer design. This streaming server system is substantially efficient to reduce the deterioration of streaming video transferred on the subcarriers of low power strength without any modifications of the existing schedulers, packet ordering/reassembly, and subcarrier allocation strategies in the base station.