• Title/Summary/Keyword: Packet drop detection

Search Result 23, Processing Time 0.025 seconds

An Analysis of Detection of Malicious Packet Dropping and Detour Scheme in IoT based on IPv6 (IPv6 기반의 사물인터넷 환경에서 악성 노드의 패킷 유실 공격 탐지 및 우회 기법 분석)

  • Choi, Jaewoo;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.3
    • /
    • pp.655-659
    • /
    • 2016
  • In this paper, we propose new detection and detour methods against packet drop attacks for availability in the Internet of Things (IoT) based on the IEEE 802.15.4e and RPL protocol standards that employ IPv6. We consider the rank value of RPL and the consecutive packet drops to improve the detection metrics, and also take into account the use of both sibling and child nodes on a RPL routing path to construct the detour method. Our simulation results show that the proposed detection method is faster than the previous result, and the detour method improves the detour success rate.

Modified Random Early Defection Algorithm for the Dynamic Congestion Control in Routers (라우터에서의 동적인 혼잡 제어를 위한 새로운 큐 관리 알고리즘)

  • Koo, Ja-Hon;Song, Byung-Hun;Chung, Kwang-Sue;Oh, Seoung-Jun
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.4
    • /
    • pp.517-526
    • /
    • 2001
  • In order to reduce the increasing packet loss rates caused by an exponential increase in network traffic, the IETF(Internet Engineering Task Force) is considering the deployment of active queue management techniques such as RED(Random Early Detection). While active queue management in routers and gateways can potentially reduce total packet loss rates in the Internet, this paper has demonstrated the inherent weakness of current techniques and shows that they are ineffective in preventing high loss rates. The inherent problem with these queue management algorithms is that they all use queue lengths as the indicator of the severity of congestion. In this paper, in order to solve this problem, a new active queue management algorithm called MRED(Modified Random Early Detection) is proposed. MRED computes the packet drop probability based on our heuristic method rather than the simple method used in RED. Using simulation, MRED is shown to perform better than existing queue management schemes. To analyze the performance, we also measure throughput of traffics under the FIFO control, and compared the performance with that of this MRED system.

  • PDF

Achieving Relative Loss Differentiation using D-VQSDDP with Differential Drop Probability (차별적이니 드랍-확률을 갖는 동적-VQSDDP를 이용한 상대적 손실차별화의 달성)

  • Kyung-Rae Cho;Ja-Whan Koo;Jin-Wook Chung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.1332-1335
    • /
    • 2008
  • In order to various service types of real time and non-real time traffic with varying requirements are transmitted over the IEEE 802.16 standard is expected to provide quality of service(QoS) researchers have explored to provide a queue management scheme with differentiated loss guarantees for the future Internet. The sides of a packet drop rate, an each class to differential drop probability on achieving a low delay and high traffic intensity. Improved a queue management scheme to be enhanced to offer a drop probability is desired necessarily. This paper considers multiple random early detection with differential drop probability which is a slightly modified version of the Multiple-RED(Random Early Detection) model, to get the performance of the best suited, we analyzes its main control parameters (maxth, minth, maxp) for achieving the proportional loss differentiation (PLD) model, and gives their setting guidance from the analytic approach. we propose Dynamic-multiple queue management scheme based on differential drop probability, called Dynamic-VQSDDP(Variable Queue State Differential Drop Probability)T, is proposed to overcome M-RED's shortcoming as well as supports static maxp parameter setting values for relative and each class proportional loss differentiation. M-RED is static according to the situation of the network traffic, Network environment is very dynamic situation. Therefore maxp parameter values needs to modify too to the constantly and dynamic. The verification of the guidance is shown with figuring out loss probability using a proposed algorithm under dynamic offered load and is also selection problem of optimal values of parameters for high traffic intensity and show that Dynamic-VQSDDP has the better performance in terms of packet drop rate. We also demonstrated using an ns-2 network simulation.

A Study on Performance Improvement of Adaptive AQM Using the Variation of Queue Length (큐 변화량을 이용한 적응식 AQM 성능 향상에 관한 연구)

  • Kim, Jong-Hwa;Lee, Ki-Young
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.159-162
    • /
    • 2005
  • Random Early Detection (RED), one of the most well-known Active Queue Management (AQM), has been designed to substitute Tail Drop and is nowadays widely implemented in commercially available routers. RED algorithm provides high throughput and low delay as well as a solution of global synchronization. However RED is sensitive to parameters setting, so the performance of RED, significantly depends on the fixed parameters. To solve this problem, the Adaptive RED (ARED) algorithm is suggested by S. Floyd. But, ARED also uses fixed parameters like target-queue length; it is hard to respond to bursty traffic actively. In this paper, we proposed AQM algorithm based on the variation of current queue length in order to improve adaptability about burst traffic. We measured performance of proposed algorithm through a throughput, marking-drop rate and bias phenomenon. In experimentation, we raised a packet throughput as reduced packet drop rate, and we confirmed to reduce a bias phenomenon about bursty traffic.

  • PDF

Performance Improvement on RED Based Gateway in TCP Communication Network

  • Prabhavat, Sumet;Varakulsiripunth, Ruttikorn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.782-787
    • /
    • 2004
  • Internet Engineering Task Force (IETF) has been considering the deployment of the Random Early Detection (RED) in order to avoid the increasing of packet loss rates which caused by an exponential increase in network traffic and buffer overflow. Although RED mechanism can prevent buffer overflow and hence reduce an average values of packet loss rates, but this technique is ineffective in preventing the consecutive drop in the high traffic condition. Moreover, it increases a probability and average number of consecutive dropped packet in the low traffic condition (named as "uncritical condition"). RED mechanism effects to TCP congestion control that build up the consecutive of the unnecessary transmission rate reducing; lead to low utilization on the link and consequently degrade the network performance. To overcome these problems, we have proposed a new mechanism, named as Extended Drop slope RED (ExRED) mechanism, by modifying the traditional RED. The numerical and simulation results show that our proposed mechanism reduces a drop probability in the uncritical condition.

  • PDF

Improve ARED Algorithm in TCP/IP Network (TCP/IP 네트워크에서 ARED 알고리즘의 성능 개선)

  • Nam, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.177-183
    • /
    • 2007
  • Active queue management (AQM) refers to a family of packet dropping mechanisms for router queues that has been proposed to support end-to-end congestion control mechanisms in the Internet. The proposed AQM algorithm by the IETF is Random Early Detection (RED). The RED algorithm allows network operators simultaneously to achieve high throughput and low average delay. However. the resulting average queue length is quite sensitive to the level of congestion. In this paper, we propose the Refined Adaptive RED(RARED), as a solution for reducing the sensitivity to parameters that affect RED performance. Based on simulations, we observe that the RARED scheme improves overall performance of the network. In particular, the RARED scheme reduces packet drop rate and improves goodput.

  • PDF

A Fuzzy Logic Buffer Management Algorithm (IP over ATM 네트워크에서 퍼지 버퍼 관리 알고리즘)

  • Kim Kwan-Woong;Bae Sung-Hwan
    • The KIPS Transactions:PartC
    • /
    • v.12C no.2 s.98
    • /
    • pp.229-234
    • /
    • 2005
  • We propose a fuzzy logic-based buffer management algorithm to improve internet traffic over ATM-GFR service. The proposed algorithm employs the strategies of early congestion detection and selective packet discard to achieve its design goals. A key feature of proposed algorithm is its ability to accept or drop a new incoming packet dynamically based on buffer condition and load rate of VCs. This is achieved by using fuzzy logic controller for the production of a drop factor. Simulation results show that proposed scheme significantly has improved fairness and TCP throughput compared with previous schemes.

A New Active RED Algorithm for Congestion Control in IP Networks (IP 네트워크에서 혼잡제어를 위한 새로운 Active RED 알고리즘)

  • Koo, Ja-Hon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.4
    • /
    • pp.437-446
    • /
    • 2002
  • In order to reduce the increasing packet loss rates caused by an exponential increase in network traffic, the IETF (Internet Engineering Task Force) is considering the deployment of active queue management techniques such as RED (Random Early Detection). While active queue management in routers and gateways can potentially reduce packet loss rates in the Internet, this paper has demonstrated the inherent weakness of current techniques and shows that they are ineffective in preventing high loss rates. The inherent problem with these queue management algorithms is that they all use static parameter setting. So, in case where these parameters do not match the requirement of the network load, the performance of these algorithms can approach that of a traditional Drop-tail. In this paper, in order to solve this problem, a new active queue management algorithm called ARED (Active RED) is proposed. ARED computes the parameter based on our heuristic method. This algorithm can effectively reduce packet loss while maintaining high link utilizations.

Analysis of MANET's Routing Protocols, Security Attacks and Detection Techniques- A Review

  • Amina Yaqoob;Alma Shamas;Jawwad Ibrahim
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.23-32
    • /
    • 2024
  • Mobile Ad hoc Network is a network of multiple wireless nodes which communicate and exchange information together without any fixed and centralized infrastructure. The core objective for the development of MANET is to provide movability, portability and extensibility. Due to infrastructure less network topology of the network changes frequently this causes many challenges for designing routing algorithms. Many routing protocols for MANET have been suggested for last few years and research is still going on. In this paper we review three main routing protocols namely Proactive, Reactive and Hybrid, performance comparison of Proactive such as DSDV, Reactive as AODV, DSR, TORA and Hybrid as ZRP in different network scenarios including dynamic network size, changing number of nodes, changing movability of nodes, in high movability and denser network and low movability and low traffic. This paper analyzes these scenarios on the performance evaluation metrics e.g. Throughput, Packet Delivery Ratio (PDR), Normalized Routing Load(NRL) and End To-End delay(ETE).This paper also reviews various network layer security attacks challenge by routing protocols, detection mechanism proposes to detect these attacks and compare performance of these attacks on evaluation metrics such as Routing Overhead, Transmission Delay and packet drop rates.

TCP Performance Analysis of Packet Buffering in Mobile IP based Networks (모바일 IP 네트워크에서 패킷 버퍼링 방식의 TCP 성능 분석)

  • 허경;노재성;조성준;엄두섭;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5B
    • /
    • pp.475-488
    • /
    • 2003
  • To prevent performance degradation of TCP due to packet losses in the smooth handoff by the route optimization extension of Mobile IP protocol, a buffering of packets at a base station is needed. A buffering of packets at a base station recovers those packets dropped during handoff by forwarding buffered packets at the old base station to the mobile user. But, when the mobile user moves to a congested base station in a new foreign subnetwork, those buffered packets forwarded by the old base station are dropped and TCP transmission performance of a mobile user in the congested base station degrades due to increased congestion by those forwarded burst packets. In this paper, considering the general case that a mobile user moves to a congested base station, we analyze the influence of packet buffering on TCP performance according to handoff arrival distribution for Drop-tail and RED (Random Early Detection) buffer management schemes. Simulation results show that RED scheme can reduce the congestion increased by those forwarded burst packets comparing Drop-Tail, but RED scheme cannot avoid Global Synchronization due to forwarded burst packets by the old base station and new buffer management scheme to avoid it is needed in Mobile IP based networks.