• Title/Summary/Keyword: Packet Loss

Search Result 975, Processing Time 0.028 seconds

Analysis of the Percentage Articulation and Voice Packet Loss over the Internet (인터넷상의 음성 패킷손실과 명료도 분석)

  • 고대식;박준석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2090-2095
    • /
    • 1998
  • In this paper, we measured voice packet loss over the Korean Internet and analyzed percentage articulation by variation of the packet loss. To do this, we reviewed real-time transmission service based on RTP/UDP/IP and test method of the transmission quality. and implemented the real-time speech transmission system using GSM and UDP/IP. Monosyllable list has been chosen for the percentage articulation test, each voice packet has been coded and compressed by GSM and it has sequence number to measured packet loss and to recover out-of-order packets. In transmission results using seven router over the Korean Internet, we have show that loss rates reached 1.6% (unload), 22.5%(load) and loss rates after packet recovery by resequencing and FEC are from 9% to 35%. Finally, we have shown that percentage articulations by variation of the network traffic are Table 4.

  • PDF

A Buffer Management Scheme for Multi-hop Traffic in IEEE 802.11 based Mesh Networks (IEEE 802.11 기반 메쉬 네트워크에서 다중 홉 트래픽을 위한 버퍼 관리 방식)

  • Jang, Kil-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.455-462
    • /
    • 2009
  • In this paper, we propose a buffer management scheme for decreasing the packet loss due to buffer overflow and improving the packet fairness between nodes in IEEE 802.11 based multi-hop mesh networks. In the proposed scheme, each mesh router that is an intermediate node receives fairly packet sent from neighboring mesh routers and mobile nodes, and it improves the reception ratio of multi-hop traffic of neighboring mesh routers. Therefore, the proposed scheme can reduce transmission delay and energy consumption. In order to improving the packet loss and the packet fairness, the proposed scheme uses the modified RTS/CTS under the IEEE 802.11 MAC protocol and reduces the packet loss by recognizing the packet size to send to the destination in advance. By using the simulation, we evaluated the proposed scheme in terms of the packet loss ratio and the number of received packet in each mesh router, and compare it to a traditional scheme.

Adaptive Speech Streaming Based on Packet Loss Prediction Using Support Vector Machine for Software-Based Multipoint Control Unit over IP Networks

  • Kang, Jin Ah;Han, Mikyong;Jang, Jong-Hyun;Kim, Hong Kook
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1064-1073
    • /
    • 2016
  • An adaptive speech streaming method to improve the perceived speech quality of a software-based multipoint control unit (SW-based MCU) over IP networks is proposed. First, the proposed method predicts whether the speech packet to be transmitted is lost. To this end, the proposed method learns the pattern of packet losses in the IP network, and then predicts the loss of the packet to be transmitted over that IP network. The proposed method classifies the speech signal into different classes of silence, unvoiced, speech onset, or voiced frame. Based on the results of packet loss prediction and speech classification, the proposed method determines the proper amount and bitrate of redundant speech data (RSD) that are sent with primary speech data (PSD) in order to assist the speech decoder to restore the speech signals of lost packets. Specifically, when a packet is predicted to be lost, the amount and bitrate of the RSD must be increased through a reduction in the bitrate of the PSD. The effectiveness of the proposed method for learning the packet loss pattern and assigning a different speech coding rate is then demonstrated using a support vector machine and adaptive multirate-narrowband, respectively. The results show that as compared with conventional methods that restore lost speech signals, the proposed method remarkably improves the perceived speech quality of an SW-based MCU under various packet loss conditions in an IP network.

Passive Overall Packet Loss Estimation at the Border of an ISP

  • Lan, Haoliang;Ding, Wei;Zhang, YuMei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3150-3171
    • /
    • 2018
  • In this paper, a heuristic method that leverages packet traces captured at the entire boarder of an ISP to distinguish and estimate the overall packet loss within an ISP's management domain (Intra_Path_Loss) and that in the outside Internet (Inter_Path_Loss) is proposed. Our method is inspired by that packet losses happened at different locations will cause different TCP sequence number patterns at the border of an ISP. Thereby, we leverage these TCP sequence number patterns to build a series of heuristic rules to estimate Intra_Path_Loss and Inter_Path_Loss, respectively. We do this work with an eye towards showing that the overall packet losses defined and estimated in this paper can provide the operators with some valuable information to help them precisely grasp the overall performance of network paths and narrow down the range of network anomalies. The proposed method is rigorously validated with simulations, and finally the results from a regional academic network JSERNET verify its effectiveness and practicability.

Strengthening Packet Loss Measurement from the Network Intermediate Point

  • Lan, Haoliang;Ding, Wei;Zhang, YuMei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5948-5971
    • /
    • 2019
  • Estimating loss rates with the packet traces captured from some point in the middle of the network has received much attention within the research community. Meanwhile, existing intermediate-point methods like [1] require the capturing system to capture all the TCP traffic that crosses the border of an access network (typically Gigabit network) destined to or coming from the Internet. However, limited to the performance of current hardware and software, capturing network traffic in a Gigabit environment is still a challenging task. The uncaptured packets will affect the total number of captured packets and the estimated number of packet losses, which eventually affects the accuracy of the estimated loss rate. Therefore, to obtain more accurate loss rate, a method of strengthening packet loss measurement from the network intermediate point is proposed in this paper. Through constructing a series of heuristic rules and leveraging the binomial distribution principle, the proposed method realizes the compensation for the estimated loss rate. Also, experiment results show that although there is no increase in the proportion of accurate estimates, the compensation makes the majority of estimates closer to the accurate ones.

Eliminating Packet Loss Scheme During Handoff Under Wireless LAN (무선 랜 환경에서 Handoff 발생시의 패킷 손실 제거 기법)

  • 김형욱;이미란;곽도위;윤성대
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.285-288
    • /
    • 2001
  • In this paper, we propose strategies that eliminating packet loss and minimize delay time during handoff under wireless LAN environments. As a mobile host moves between cells, a handoff takes place. A few handoff protocol have been proposed to eliminate the packet loss, but they have a heavy overhead. So, We proposed handoff protocol using the next-cell prediction scheme that send not to current BS but to mobile host and next BS, therefore next BS buffered packet send mobile host after handoff. We also present simulation results for our simulation using the Network Simulator (ns2). The simulations show that our handoff scheme is no packet loss.

  • PDF

Performance Analysis of TCP Loss Recovery for Correlated Packet Losses over Wireless Networks (상호 연관성을 갖는 연속적인 패킷 손실에 대한 TCP 손실 복구 성능 분석)

  • 김범준;김석규;이재용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7B
    • /
    • pp.660-666
    • /
    • 2004
  • Overall TCP performance represented by end-to-end throughput is largely dependent upon its loss recovery performance. In particular non-congestion packet losses caused by transmission errors degrade TCP performance seriously. Using Markov process, we analyze TCP loss recovery performance for correlated packet losses caused by multipath fading. The results show that loss recovery performance can be severely affected by burstiness in packet losses, even if overall packet loss ratio is very low.

Adaptation of SVC to Packet Loss and its Performance Analysis (패킷 손실에 대한 스케일러블 비디오(SVC) 적응기법 및 성능분석)

  • Jang, Euy-Doc;Kim, Jae-Gon;Thang, Truong Cong;Kang, Jung-Won
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.796-806
    • /
    • 2009
  • SVC (Scalable Video Coding) is a new video coding standard to provide convergence media service in heterogeneous environments with different networks and diverse terminals through spatial-temporal-quality combined flexible scalabilities. This paper presents the performance analysis on packet loss in the delivery of SVC over IP networks and an efficient adaptation method to packet loss caused by buffer overflow. In particular, SVC with MGS (Medium Grained Scalability) as well as spatial and temporal scalabilities is addressed in the consideration of packet-based adaptation since finer adaptation is possible with a sufficient numbers of quality layers in MGS. The effect on spatio-temporal quality due to the packet loss of SVC with MGS is evaluated. In order to minimize quality degradation resulted by packet loss, the proposed adaptation of MGS based SVC first sets adaptation unit of AU (Access Unit) or GOP corresponding to allowed delay and then selectively discards packets in order of importance in terms of layer dependency. In the experiment, the effects of packet loss on quantitative qualities are analyzed and the effectiveness of the proposed adaptation to packet loss is shown.

Bandwidth Efficient Adaptive Forward Error Correction Mechanism with Feedback Channel

  • Ali, Farhan Azmat;Simoens, Pieter;de Meerssche, Wim Van;Dhoedt, Bart
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.322-334
    • /
    • 2014
  • Multimedia content is very sensitive to packet loss and therefore multimedia streams are typically protected against packet loss, either by supporting retransmission requests or by adding redundant forward error correction (FEC) data. However, the redundant FEC information introduces significant additional bandwidth requirements, as compared to the bitrate of the original video stream. Especially on wireless and mobile networks, bandwidth availability is limited and variable. In this article, an adaptive FEC (A-FEC) system is presented whereby the redundancy rate is dynamically adjusted to the packet loss, based on feedback messages from the client. We present a statistical model of our A-FEC system and validate the proposed system under different packet loss conditions and loss probabilities. The experimental results show that 57-95%bandwidth gain can be achieved compared with a static FEC approach.

Implementation of a High-Quality Audio Collaboration System Over IP Networks (IP 네트워크 기반 고품질 오디오 협업 시스템)

  • Kang, Jin-Ah;Kim, Hong-Kook
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.218-223
    • /
    • 2008
  • In this paper, we implement several methods to improve an audio collaboration system over IP networks, and then evaluate the performance of the implemented methods. In general, speech and audio quality degrades depending on the characteristics of IP networks such as jitter and packet loss. In order to reduce this quality degradation, we propose a lower bit rate audio delivery scheme using the MPEG-2 AAC (Advanced Audio Coding) audio codec in a viewpoint that a packet loss rate could be reduced by a smaller packet size. In addition, iLBC (Internet Low-Bitrate Codec) and the G.711 packet loss concealment algorithm defined by IEFT and ITU-T, respectively, are applied to a audio collaboration system. RAT (Robust-Audio Tool)[7] is used as a baseline platform for the implementation of the proposed methods. It is shown from the implementation that the implemented MPEG-2 AAC audio codec with a bitrate of 256 kbit/s performs as similar as the uncompressed audio quality with a bitrate of 512 kbit/s, and that iLBC and the G.711 packet loss concealment algorithm can improve speech quality when a packet loss rate is 2~10%.

  • PDF