• 제목/요약/키워드: Packaging Waste

검색결과 128건 처리시간 0.02초

종이 기반과 플라스틱 기반 보건마스크 패키징의 환경영향 비교 (Comparison of Environmental Evaluation for Paper and Plastic Based Mask Packaging)

  • 강동호;고유진;오상훈;추고현;장지수;이준혁;심진기
    • 한국포장학회지
    • /
    • 제30권1호
    • /
    • pp.73-83
    • /
    • 2024
  • In this study, environmental evaluation of high barrier coated paper (coating layer/paper) packaging is conducted in comparison with conventional aluminum laminated (PET/VMPET/LLDPE) plastic packaging. The target product for this packaging is a KF94 mask, which requires a high barrier of water and oxygen to maintain the filtration ability of the mask filter. The functional unit of this study is 10,000 mask packaging materials based on a material capable of blocking oxygen (<1 g/m2day) and moisture (<3 g/m2day) for the preservation of KF94 masks. In order to understand the results easily, paper-based mask packaging system divided into 6 stages (pulp, pulping & paper making, calendaring & coating, printing, packing and waste management), while plastic-based mask packaging consists of 5 stages (material production, processing, printing, packing, waste management) In case of paper-based mask packaging, most contributing stage is calendaring & coating, resulting from heat and electricity production. On the other hand, plastic-based mask packaging is contributed more than 30% by material production, specifically due to linear low density polyethylene and purified terephthalic acid production. The comparison results show that global warming potential of paper-based mask packaging has 32% lower than that of plastic-based mask packaging. Most of other impact indicators revealed in similar trend.

Exploring consumer awareness and attitudes towards eco-friendly packaging among undergraduate students in Korea

  • Quedahm Chin;Seungjee Hong
    • 농업과학연구
    • /
    • 제50권4호
    • /
    • pp.697-711
    • /
    • 2023
  • The global waste crisis has been escalating and its consequent impact on soil, water, air pollution, and eventually climate change acceleration has shed light on the importance of reducing waste. Amidst COVID-19 and the following surge in single-use plastics for food delivery, waste generation is on the incline. Companies and governments have embarked on developing various eco-friendly packaging technologies, but their effectiveness on the consumers is vague as definitions of eco-friendly packaging are vague, and research on its link to purchase intention remains scarce. Thus, the adoption of eco-friendly packaging has been slow. To address this issue, this study analyzes the awareness and purchase intention of four visual attributes of eco-friendly packaging-material, verbal statement, eco-label, and color-along with the environmental consciousness among undergraduate university students in Korea through online surveys and the ordered logit regression model. The study distinguished the attributes into evidence-based and conjectural categories. The findings revealed that eco-friendly visual attributes had a positive effect on purchase intention amongst undergraduate students in Korea; however the level of environmental consciousness had marginal effect on the purchase intention of eco-friendly visual attributes. The level of effectiveness also varied with each visual element. Analyses revealed that visual attributes to eco-friendly material had marginal effect on purchase intention; color was deemed not an "Eco-friendly attribute" by most students, and although eco-friendly labels were deemed as an eco-friendly attribute, trust in the labels varied according to environmental consciousness. These findings have implications for businesses and policymakers aiming to promote eco-friendly consumption within packaged food products.

카톤지와 골판지를 이용한 친환경 논스테이플 박스와 케이스 디자인 구조개발 (The Development of Design Structure for Environmental Friendly Non-Staple Boxes and Cases Made by the Carton and Corrugated Paperboard)

  • 조용민;엄기증;김진무
    • 펄프종이기술
    • /
    • 제39권1호
    • /
    • pp.69-77
    • /
    • 2007
  • Carton and corrugated paperboard have excellent convertibility characteristics that could be easily slitted, folded, and inserted to become a certain shape of box or case. This excellent processing characteristics of carton and corrugated paperboard as well as their recyclability will continue to make them possess high portion in packaging markets. However, staple, tape, or adhesive have been used to seal a paperboard packaging box or case. Staples among them have been frequently used in many cases because of their convenience. Staples could enter the inside the box and give wounds to the goods in the box or case. Furthermore additional handling and waste treatment costs in the making and recycling processes would be necessary when staple is used to seal box or case. This study has been carried out to develop non-staple paperboard packaging box & case designs that can be used to make non-staple boxes & cases. It is believed that the non-staple folding paperboard boxes & cases could be more environmental-friendly, beautiful, and economic than staple boxes & cases.

Potential Use of Biopolymer-based Nanocomposite Films in Food Packaging Applications

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.691-709
    • /
    • 2007
  • Concerns on environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as consumer's demand for high quality food products has caused an increasing interest in developing biodegradable packaging materials using annually renewable natural biopolymers such as polysaccharides and proteins. However, inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low water resistance are causing a major limitation for their industrial use. By the way, recent advent of nanocomposite technology rekindled interests on the use of natural biopolymers in the food packaging application. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to their nanometer size dispersion. These improvements include increased mechanical strength, decreased gas permeability, and increased water resistance. Additionally, biologically active ingredients can be added to impart the desired functional properties to the resulting packaging materials. Consequently, natural biopolymer-based nanocomposite packaging materials with bio-functional properties have huge potential for application in the active food packaging industry. In this review, recent advances in the preparation and characterization of natural biopolymer-based nanocomposite films, and their potential use in food packaging applications are addressed.