• Title/Summary/Keyword: PZT-PVDF

Search Result 43, Processing Time 0.017 seconds

PZT/PVDF Composite Ultrasonic Transducers and Its Experimental Estimate (PZT /PVDF 복합구조 초음파 트랜스듀서의 제안과 실험적 검토)

  • 김동현
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.64-67
    • /
    • 1997
  • PZT 및 PVDF의 장점을 이용한 송.수신 일체의 PZT/PVDF 복합구조 초음파 트랜스듀서를 제안하고, 그 특성을 분포정수형 등가회로를 이용하여 해석하였다. 특히 수신부의 PVDF를 다층으로 하여 송.수신 특성을 상당히 개선할 수 있음을 확인하였다.

  • PDF

Phase Transition and Improvement of Output Efficiency of the PZT/PVDF Piezoelectric Device by Adding Carbon Nanotubes (Carbon Nanotube의 첨가에 의한 PZT/PVDF 압전소자의 상전이와 출력 효율 개선)

  • Lim, Youngtaek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.94-97
    • /
    • 2018
  • Lead zirconate titanate/poly-vinylidene fluoride (PZT/PVDF) piezoelectric devices were fabricated by incorporating carbon nanotubes (CNTs), for use as flexible energy harvesting devices. CNTs were added to maximize the formation of the ${\beta}$ phase of PVDF to enhance the piezoelectricity of the devices. The phase transition of PVDF induced by the addition of CNTs was confirmed by analyzing the X-ray diffraction patterns, scanning electron microscopy images, and atomic force microscopy images. The enhanced output efficiency of the PZT/PVDF piezoelectric devices was confirmed by measuring the output current and voltage of the fabricated devices. The maximum output current and voltage of the PZT/PVDF piezoelectric devices was 200 nA and 350 mV, respectively, upon incorporation of 0.06 wt% CNTs.

Characteristics of the Wide-band Underwater Acoustic Transducer Made by Multi-Layered Structure of PAT and PVDF (PZT와 PVDF의 복합다층구조에 의한 광대역 수중 초음파 트랜스듀서의 특성)

  • 김동현;김무준;하강열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.56-62
    • /
    • 1998
  • 전기-기계변환효율이 좋은 PZT를 송신용으로, 대역특성이 우수한 PVDF를 수신용 으로한 PZT/PVDF 복합구조 수중초음파 트랜스듀서를 제안하고, 외부는 PZT, 내부는 PVDF로 된 동심원형의 트랜스듀서를 설계·제작하여, 그 특성을 이론적, 실험적으로 파악 하였다. 삽입손실과 임펄스 응답파형에 대한 등가회로해석 및 측정결과로부터 제안한 트랜 스듀서의 특성, 특히, 대역폭이 종래의 PZT 단일소자에 의한 트랜스듀서보다 향상될 수 있 음을 알았다.

  • PDF

Vibration Control of Beam using Distributed PVDF sensor and PZT actuator (분포형 압전 필름 감지기와 압전 세라믹 작동기를 이용한 보의 진동 제어)

  • 박근영;유정규;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.413-417
    • /
    • 1997
  • Distributed piezoelectric sensor and actuator have been designed for efficient vibration control of a cantilevered beam. Both PZT and PVDF are used in this study, the former as an actuator and the latter as a sensor for our integrated structure. For the PZT actuator, the position and size have been optimized. Optimal electrode shape of the PVDF sensor has been determined. For multi-mode vibration control, we have used two PZT actuators and a PVDF sensor. Electrode shading of PVDF is more powerful for modal force adjustment than the sizing and positioning of PZT. Finite element method is used to model the structure that includes the PZT actuator and the PVDF sensor. By deciding on or off of each PZT segment, the length and the location of the PZT actuator are optimize. Considering both of the host structure and the optimized actuators, it is designed that the active electrode width of PVDF sensor along the span of the beam. Actuator design is based on the criterion of minimizing the system energy in the control modes under a given initial condition. Sensor is designed to minimize the observation spill-over. Modal control forces for the residual(uncontrolled) modes have been minimized during the sensor design. Genetic algorithm, which is suitable for this kind of discrete problems, has been utilized for optimization. Discrete LQG control law has been applied to the integrated structure for real time vibration control. Performance of the sensor, the actuator, and the integrated smart structure has been demonstrated by experiments.

  • PDF

Nondestructive Evaluation and Interfacial Damage Sensing of PVDF embedded Polymer Composites using Micromechanical Techniques and Acoustic Emission (Micromechanical 시험법과 AE를 이용한 PVDF 함침 고분자 복합재료의 계면손상감지능 및 비파괴적 평가 연구)

  • Kong, Jin-Woo;Park, Joung-Man;Kim, Ki-Bok;Yoon, Dong-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.216-219
    • /
    • 2002
  • Conventional piezoelectric lead-zirconate-titanate (PZT) senor has high sensitivity, but it is very brittle. Recently polymer films such as polyvinylidene fluoride (PVDF) have been used use as a sensor. The advantages of PVDF are the flexibility and mechanical toughness. Simple process and possible several shapes are also additional advantages. PVDF sensor can be directly embedded and attached to a structure. In this study, PVDF sensor was embedded in single glass fiber/epoxy composites whereas PZT sensor with AE was attached to single fiber composites (SFC). Piezoelectric sensor responds to interfacial damage of SFC. The signals measured by PVDF sensor were compared to PZT sensor. PZT sensor detected the signals of fiber fracture, matrix crack, interfacial debonding and even sensor delamination, whereas PVDF sensor only detected fiber fracture signals so far, because PZT sensor is much more sensitive than current PVDF sensor. Wave voltage of fiber fracture measured by PVDF sensor was lower than that of PZT sensor, but the results of fast Fourier transform (FFT) analysis were same. Wave velocity using two PZT sensors was also studied to know the internal and surface damage effect of epoxy specimens.

  • PDF

Optimization of Electrospinning Conditions for PZT/PVDF Nanofibers (PZT/PVDF 나노섬유의 전기방사 조건 최적화)

  • Park, Chun Kil;Yun, Ji Sun;Cho, Jeong Ho;Paik, Jong-Hoo;Jeong, Young Hun;Jeong, Dae young
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.523-526
    • /
    • 2014
  • PZT($Pb(Zr_{0.53}Ti_{0.47})O_3$)/PVDF(poly vinylidene fluoride) nanofibers were prepared based on DMF (dimethylformamide) and acetone solvent by electrospinning. The optimum concentration of a PZT and PVDF composite solution for the formation of nanofibers was found by SEM (scanning electron microscopy) observations. XRD (X-ray diffraction) measurements indicated that the characteristics of PZT and PVDF coexisted. The effects of the PZT concentration on the tensile strength were investigated.

Evaluation of Nondestructive Damage Sensitivity on Single-Basalt Fiber/Epoxy Composites using Micromechanical Test and Acoustic Emission with PZT and PVDF Sensors (PZT 및 PVDF 센서에 따른 음향방출과 Micromechanical 시험법을 이용한 단일 Basalt 섬유 강화 에폭시 복합재료의 비파괴 손상감지능 평가)

  • Kim, Dae-Sik;Park, Joung-Man;Jung, Jin-Kyu;Kong, Jin-Woo;Yoon, Dong-Jin
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.61-67
    • /
    • 2004
  • Nondestructive damage sensitivity on single-basalt fiber/epoxy composites was evaluated by micromechanical technique and acoustic emission (AE). Piezoelectric lead-zirconate-titanate (PZT), polyvinylidene fluoride (PVDF) and poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer were used as AE sensor, respectively. In single-fiber composite, the damage sensing with different sensor types were compared to each other. Piezoelectric PVDF polymer sensor was embedded in and attached on the composite, whereas PZT sensor was only attached on the surface of specimen. In case of embedded polymer sensors, responding sensitivity was higher than that of the attached case. It can be due to full constraint inside specimen to transfer elastic wave coming from micro-deformation. For both the attached and the embedded cases, the sensitivity of P(VDF-TrFE) sensor was almost same as that of conventional PVDF sensor.

Effects on PZT volume fraction on the dielectric and piezoelectric properties with PZT/PVDF O-3 composites (PZT/PVDF O-3형 복합전체에 있어서 PZT 체적비 변화가 유전 및 압전특성에 미치는 영향)

  • 이덕출;김용혁
    • Electrical & Electronic Materials
    • /
    • v.1 no.1
    • /
    • pp.44-53
    • /
    • 1988
  • In this study, PZT/PVDF composites with O-3 phase connectivity were prepared by hot pressing method, and the dielectric and piezoelectric properties as a function of PZT volume fraction were investigated. A modified cubic model was introduced to explain the influence of the PZT volume fraction on the experimentally determined dielectric constant. As A n=0.125, the measured dielectric constant values agreed with the calculated values. It was found that dielectric constant .xi.$_{33}$ and piezoelectric coefficient d$_{33}$ increased with indreasing PZT volume fraction, and hydrostatic piezoelectric figure of merit d/aub h/.g$_{h}$ was improved relative to that of the PZT single phase material.l.l.l.

  • PDF

Investigation on PVDE & PZT Sensor Signals for the Low-Velocity Impact Damage of Gr/Ep Composite Laminates (복합적층판의 저속충격손상에 따른 PZT 센서와 PVDF 센서의 신호 분석)

  • 이홍영;김진원;최정민;김인걸
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.125-128
    • /
    • 2003
  • Low-velocity impact damage is a major concern in the design of structures made of composite materials, because impact damage is hidden inside and cannot be detected by visual inspection. The piezoelectric thin film sensor can be used to detect variations in structural and material properties for structural health monitoring. In this paper, the PVDF and PZT sensors were used for monitoring impact damage initiation in Gr/Ep composite panel to illustrate this potential benefit. A series of impact test at various impact energy by changing impact mass and height is performed on the instrumented drop weight impact tester. The wavelet transform(WT) is used to decompose the piezoelectric sensor signals in this study. Test results show that the particular waveform of sensor signals implying the damage initiation and development are detected above the damage initiation impact energy. And it is found that both PZT and PVDF sensors can be used to detect the impact damage.

  • PDF

PVDF interdigitated transducer for generating and detecting Lamb waves in plates

  • Gu, Hua;Lloyd, George M.;Wang, Ming L.
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.291-304
    • /
    • 2008
  • Piezoelectric materials have been widely used in ultrasonic nondestructive testing (NDT). PZT ceramics can be used to receive and generate surface acoustic waves. It is a common application to attach PZT transducers to the surface of structures for detecting cracks in nondestructive testing. However, not until recently have piezoelectric polymers attracted more and more attention to be the material for interdigitated (IDT) surface and guided-wave transducers. In this paper, an interdigitated gold-on-polyvinylidene fluoride (PVDF) transducer for actuating and sensing Lamb waves has been introduced. A specific etching technology is employed for making the surface electrodes into a certain finger pattern, the spacings of which yield different single mode responses of Lamb waves. Experiments have been performed on steel and carbon fiber composite plates. Results from PVDF IDT sensors have been compared with those from PZT transducers for verification.